NTC Ceramics: Past, Present and Future

Article Preview

Abstract:

In contrast with metals, the resistivity of ceramics decreases with increasing temperatures. This phenomenon was first discovered in 1833 by Faraday and remained a mere scientific curiosity until 1930, when Samuel Ruben proposed the fabrication of a pyrometer device, which explored the negative temperature coefficient (NTC) of resistance exhibit by Cu2O. Eight decades later, NTC ceramic thermistors constitute an important business segment for most electroceramic manufacturers. Here, we present a review of the most significant scientific and technological advances, which lead to the enormous commercial success of NTC thermistors. This review concludes with an outlook into future possible applications of NTC ceramics, providing that some current technological shortcomings (such as ageing) are resolved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-133

Citation:

Online since:

October 2010

Export:

Price:

[1] A. Feteira: J. of the Amer. Ceram. Soc., Vol. 92 (2009), pp.967-983.

Google Scholar

[2] C. C. Wu and T. O. Mason: J. Am. Ceram. Soc., Vol. 64 (1981), p.520–522.

Google Scholar

[3] E. J. Verwey, P. W. Haayman, and F. C. Romeijn: J. Chem. Phys., Vol. 15 (1947), p.181–187.

Google Scholar

[4] C. Metzmacher, W. A. Groen, and I. M. Reaney: Phy. Status Solidi A-Appl. Res., Vol 181 (2000), p.369–386.

Google Scholar

[5] Moulson and Herbert, Electroceramics, London, (1994).

Google Scholar

[6] J. A. Becker, C. B. Green, and G. L. Pearson: Bell System Tech. J., Vol. 26 (1947), p.170–212.

Google Scholar

[7] H. Yongde, C. Lujin, L. Hong, Z. Dongxiang and G. Shuping: Sen. And Act., Vol. 35 1993, 269-272.

DOI: 10.1016/0924-4247(93)80167-f

Google Scholar

[8] K. Park, J.K. Lee, S. -J. Kim, W. -S. Seo, W. -S. Cho, C. -W. Lee and S. Nahm: J. Allo. and Comp., Vol. 467 (2009), pp.310-316.

Google Scholar

[9] K. Park and I.H. Han: J Electroceram Vol. 17(2006), p.1069–1073.

Google Scholar

[10] K. Park and I.H. Han: Mat. Sci. and Eng. B, Vol. 119 (2005), pp.55-60.

Google Scholar

[11] K. Park , S.J. Kim, J. -G. Kim and S. Nahm: J. Eur. Ceram. Soc., Vol. 27 (2007), p.2009–(2016).

Google Scholar

[12] K. Park and J.K. Lee: J. Allo. and Comp., Vol. 475 (2009), pp.513-517.

Google Scholar

[13] K. Park: J. Eur. Ceram. Soc., Vol. 26 (2006), p.909–914.

Google Scholar

[14] A. Feltz: J. Eur. Ceram. Soc., Vol. 20 (2000), p.2367–2376.

Google Scholar

[15] M. Deepa, P. P. Rao, S. Sumi, A. N. P. Radhakrishnan and P. Koshy: . J. of the Amer. Ceram. Soc., in press.

Google Scholar

[16] D. Houivet, J. Bernard, and J.M. Haussonne: J. Eur. Ceram. Soc., Vol. 24 (2004), p.1237–1241.

Google Scholar

[17] M. Vakiv, O. Shpotyuk, O. Mrooz, and I. Hadzaman: J. Eur. Ceram. Soc., Vol. 21 (2001), p.1783–1785.

Google Scholar

[18] D. G. Wickham: J. Inorg. Nucl. Chem., Vol. 26 (1964), p.1369–1377.

Google Scholar

[19] A. Macher, K. Reichmann, O. Fruhwirth, K. Gatterer, and G. W. Herzog,: Inform. Midem-J. Microelectron. Electron. Components Mater., Vol. 26 (1996), pp.79-85.

Google Scholar

[20] W. A. Groen, C. Metzmacher, P. Huppertz, and S. Schuurman: J. Electroceram., Vol. 7(2001), p.77–87.

Google Scholar

[21] P. Castelan, B. Ai, A. Loubiere, A. Rousset, and R. Legros: ' J. Appl. Phys., Vol. 72 (1992), p.4705–4709.

Google Scholar

[22] S. Fritsch, J. Sarrias, M. Brieu, J. J. Couderc, J. L. Baudour, E. Snoeck, and A. Rousset: Solid State Ionics, Vol. 109 (1998), p.229–237.

Google Scholar