Sol-Gel Synthesis and Characterization of Lanthanide-Substituted Nanostructured Calcium Hydroxyapatite

Article Preview

Abstract:

In this study, nanostructured Ce- and Sm-substituted Ca10(PO4)6(OH)2 samples have been synthesized using an aqueous sol-gel chemistry route. For the characterization of obtained specimens, the XRD, SEM, UV-visible reflection and IR spectroscopy and luminescence measurements were recorded. It was shown that phase purity of the end products highly depends on the amount of lanthanide element. The reflectance of lanthanide-substituted calcium hydroxyapatite samples is wavelength independent in the wavelength range of 450-800 nm and equal almost 100%. The cerium-substituted samples show a significant decrease of transmission at ~300 nm. The characteristic samarium absorption line (~430 nm) is evident in the UV-vis reflection spectra of samarium-substituted hydroxyapatites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-27

Citation:

Online since:

September 2012

Export:

Price:

[1] D. McConnel, Apatite, Its Crystal Chemistry, Mineralogy, Utilization and Geologic and Biologic Occurrences, Springer, New York, (1973).

DOI: 10.1126/science.182.4114.816.b

Google Scholar

[2] S.M. Best, A.E. Porter, E.S. Thian, J. Huang, Bioceramics: Past, present and for the future, J. Eur. Ceram. Soc. 28 (2008) 1319–1327.

DOI: 10.1016/j.jeurceramsoc.2007.12.001

Google Scholar

[3] J. Zhang, H. Tanaka, F. Ye, D. Jiang, M. Iwasa, Colloidal processing and sintering of hydroxyapatite, Mater. Chem. Phys. 101 (2007) 69–76.

DOI: 10.1016/j.matchemphys.2006.02.016

Google Scholar

[4] S.R. Ramanan, R. Venkatesh, A study of hydroxyapatite fibers prepared via sol-gel route, Mater. Lett. 58 (2004) 3320–3323.

DOI: 10.1016/j.matlet.2004.06.030

Google Scholar

[5] S. Cai, X. Yu, Z. Xiao, G. Xu, H. Lv, K. Yao, Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method, Ceram. Int. 33 (2007) 193–196.

Google Scholar

[6] I. Bogdanoviciene, A. Beganskiene, A. Kareiva, R. Juskenas, A. Selskis, R. Ramanauskas, K. Tõnsuaadu, V. Mikli, Influence of heating conditions on the formation of sol-gel derived calcium hydroxyapatite, Chemija. 21 (2010) 98–105.

DOI: 10.1002/9781118807828.ch1

Google Scholar

[7] I. Bogdanoviciene, K. Tõnsuaadu, V. Mikli, I. Grigoraviciute-Puroniene, A. Beganskiene, A. Kareiva, pH impact on the sol-gel preparation of calcium hydroxyapatite, Ca10(PO4)6(OH)2, using a novel complexing agent DCTA, Centr. Eur. J. Chem. 8 (2010).

DOI: 10.2478/s11532-010-0113-0

Google Scholar

[8] L.J. Pullen, K.A. Gross, Dissolution and mineralization of sintered and thermally sprayed hydroxy-fluoroapatites, J. Mater. Sci. Mater. Medic. 16 (2005) 399–404.

DOI: 10.1007/s10856-005-6978-3

Google Scholar

[9] J.M. Rosenholm, C. Sahlgren, M. Linden, Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities and challenges, Nanoscale. 2 (2010) 1870–1883.

DOI: 10.1039/c0nr00156b

Google Scholar

[10] E. Lavik, H. Von Recum, The role of nanomaterials in translational medicine, ACS Nano. 5 (2011) 3419–3424.

DOI: 10.1021/nn201371a

Google Scholar

[11] K.G. Neoh, E.T. Kang, Responsive surfaces for biomedical applications, MRS Bull. 35 (2010) 673–681.

DOI: 10.1557/mrs2010.679

Google Scholar

[12] B.I. Choi, Advances of imaging for hepatocellular carcinoma, Oncology. 78 (2010) 46–52.

Google Scholar

[13] L.R. Rodrigues, M. Motisuke, C.A.C. Zavaglia, Synthesis of nanostructured hydroxyapatite: A comparative study between sol-gel and aqueous solution precipitation, Bioceram. 396-398 (2009) 623–626.

DOI: 10.4028/www.scientific.net/kem.396-398.623

Google Scholar

[14] H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomaterialia. 7 (2011) 2769–2781.

DOI: 10.1016/j.actbio.2011.03.019

Google Scholar

[15] C. Rey, C. Combes, C. Drouet, A. Lebugle, H. Sfihi, A. Barroug, Nanocrystalline apatites in biological systems: characterisation, structure and properties, Materialwissenschaft Werkstofftechnik. 38 (2007) 996–1002.

DOI: 10.1002/mawe.200700229

Google Scholar

[16] C.E. Fowler, M. Li, S. Mann, H.C. Margolis, Influence of surfactant assembly on the formation of calcium phosphate materials–A model for dental enamel formation, J. Mater. Chem. 15 (2005) 3317–3325.

DOI: 10.1039/b503312h

Google Scholar

[17] L.M. Svanborg, M. Hoffman, M. Andersson, F. Currie, P. Kjellin, A. Wennerberg, The effect of hydroxyapatite nanocrystals on early bone formation surrounding dental implants, Int. J. Oral Maxillofac Surgery. 40 (2011) 308–315.

DOI: 10.1016/j.ijom.2010.10.010

Google Scholar

[18] A. Katelnikovas, J. Jurkevicius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Zukauskas, G. Tamulaitis, Efficient cerium-based sol-gel derived phosphors in different garnet matrices for light-emitting diodes, J. All. Compd. 509 (2011).

DOI: 10.1016/j.jallcom.2011.03.032

Google Scholar