Surface Properties of 316L Austenitic Steel Improved by Simultaneous Diffusion of Titanium and Aluminium

Article Preview

Abstract:

Samples of 316L austenitic steel were submitted to a thermochemical treatment which implies surface diffusion of Al and Ti. The technique of pack cementation with NH4Cl as activator was employed. The powder mixture was made of aluminium, titanium, aluminium oxide and ammonium chloride. The same ratio of Al : Ti = 1 : 5 was used in all experiments. The variables were temperature and time. As a function of these parameters, diffusion layers of different thicknesses were obtained. The samples were analyzed by optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis (EDX), X-ray diffraction and Vickers microhardness trials. All layers were formed by diffusion with reaction and present two zones with different structures and compositions and therefore different properties. The Ti3NiAl2N compound was identified by X-ray diffraction. The presence of this compound in the diffusion coatings increases the superficial hardness of the samples.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

1-7

Citation:

Online since:

April 2010

Export:

Price:

[1] D. H. Kohn: Curr. Opin. Solid State Mater. Sci. Vol. 3 (1998), p.309.

Google Scholar

[2] G. L. Winters and M. J. Nutt in: Stainless Steels for Medical and Surgical Applications, edited by West Conshohocken, PA: ASTM International, (2003).

Google Scholar

[3] D. C. Hansen: Electrochem. Soc. Interface, Summer (2008), p.31.

Google Scholar

[4] M. H. Fathi, M. Salehi, A. Saatchi, V. Mortazavi and S. B. Moosavi: Dent. Mater. Vol. 19 (2003), p.188.

Google Scholar

[5] S. Morais, J. P. Sousa, M. H. Fernandes, G. S. Carvalho, J. D. de Brujin and C. A. van Blitterswijk: Biomaterials Vol. 19 (1998), p.999.

Google Scholar

[6] L. E. Eiselstein, D. M. Proctor and T. C. Flowers: Mater. Sci. Forum Vol. 539-543 (2007), p.698.

Google Scholar

[7] N. R. Babu, S. Manwatkar, K. P. Rao and T. S. S. Kumar: Trends Biomater. Artif. Organs Vol. 17 (2004), p.43.

Google Scholar

[8] A. P. Tomsia, G. W. Marshall, E. Saiz, J. M. Gomez-Vega and S. J. Marsall, U.S. Patent 0076528 A1 (2002).

Google Scholar

[9] M. Britchi, M. Olteanu, G. Jitianu, M. Branzei, D. Gheorghe and P. Nita: Surf. Eng. Vol. 17 (2001), p.313.

DOI: 10.1179/026708401101517935

Google Scholar

[10] M. Britchi, M. Olteanu, G. Jitianu, M. Branzei, D. Gheorghe and P. Nita: Int. J. Mater. Prod. Technol. Vol. 15 (2002), p.446.

DOI: 10.1504/ijmpt.2000.001257

Google Scholar

[11] M. Britchi, M. Olteanu and N. Ene: Int. J. Mater. Prod. Technol. Vol. 25 (2006), p.267.

Google Scholar

[12] M. Britchi, N. Ene, M. Olteanu and C. Radovici: J. Serb. Chem. Soc. Vol. 74 (2009), p.203.

DOI: 10.2298/jsc0902203b

Google Scholar

[13] Z. D. Xiang and P. K. Datta: Mater. Sci. Technol. Vol. 22 (10) (2006), p.1177.

Google Scholar

[14] T. Weber and M. Schütze: Defect Diffus. Forum Vols. 237-240 (2005), p.922.

Google Scholar

[15] M. Zheng and R. A. Rapp: Oxid. Met. Vol. 49 (1998), p.19.

Google Scholar

[16] M. Britchi, M. Momirlan and I. Pencea: Int. J. Mater. Prod. Technol. Vol. 13 (1998), p.400.

Google Scholar

[17] M. A. Harper and R. A. Rapp: Oxid. Met. Vol. 42 (1994), p.303.

Google Scholar

[18] Z. D. Xiang and P. K. Datta: Acta Mater. Vol. 54 (2006), p.4453.

Google Scholar

[19] D. M. Miller, S. C. Kung, S. D. Scarberry and R. A. Rapp: Oxid. Met. Vol. 29 (1988), p.239.

Google Scholar

[20] B. Huneau, J. J. Ding, P. Rogl, J. Bauer, X. Y. Ding and M. Bohn: J. Solid State Chem. Vol. 155 (2000), p.71.

Google Scholar