Reaction-Assisted Diffusion Bonding of Advanced Materials

Article Preview

Abstract:

The aim of this work is to join -TiAl intermetallics to Ni based superalloys by solid state diffusion bonding. The surface of the -TiAl alloys and Ni superalloys to be joined was prepared by magnetron sputtering with a few microns thick Ni/Al reactive multilayer thin films with nanometric modulation periods. Sound joining without cracks or pores is achieved along the central region of the bond, especially at 800°C and when a 14 nm period Ni/Al film is used as filler material. During the diffusion bonding experiments interdiffusion and reaction inside the Ni/Al multilayer thin film and between the interlayer film and the base materials is promoted with the formation of intermetallic phases. The final reaction product in the multilayer films is the B2-NiAl intermetallic phase. The interfacial diffusion layers between the base materials and the multilayer films should correspond to: 3-NiTiAl and 4-Ni2TiAl phases from the -TiAl side; Ni-rich aluminide and -phase from the Inconel side. These intermetallic phases are responsible for the hardness increase observed on the diffusion layers.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

972-977

Citation:

Online since:

April 2010

Export:

Price:

[1] M.C. Chaturvedi, N.L. Richards and Q. Xu: Mater. Sci. Eng A Vol. 230-240 (1997), p.605.

Google Scholar

[2] C. Pascal, R. M. Marin-Ayral and J. C. Tédenac: J. Alloys Compd. Vol. 337 (2002), p.221.

Google Scholar

[3] A.S. Ramos, M.T. Vieira, S. Simões, F. Viana and M.F. Vieira: Adv. Mater. Res. Vol. 59 (2009), p.225.

Google Scholar

[4] J. Cao, J.C. Feng and Z.R. Li: J. Alloys Compd. Vol. 466 (2008), p.363.

Google Scholar

[5] J. Wang, E. Besnoin, A. Duckam, S.J. Spey, M.E. Reiss, O.M. Knio, M. Powers, M. Whitener and T.P. Weihs: Appl. Phys. Letters Vol. 83 (2003), p.3987.

DOI: 10.1063/1.1623943

Google Scholar

[6] A.J. Swiston Jr., T.C. Hufnagel and T.P. Weihs: Scripta Mater. Vol. 48 (2003), p.1575.

Google Scholar

[7] A. Duckam, S.J. Spey, J. Wang, M.E. Reiss, T.P. Weihs, E. Besnoin and O.M. Knio: J. Appl. Phys. Vol. 96 (2004), p.2336.

Google Scholar

[8] X. Qiu and J. Wang: Sensors and Actuators A Vol. 141 (2008), p.476.

Google Scholar

[9] A.S. Ramos, M.T. Vieira, J. Morgiel, J. Grzonka, S. Simões and M.F. Vieira: J. Alloys Compd. Vol. 484 (2009), p.335.

Google Scholar

[10] A.S. Ramos, M.T. Vieira, L.I. Duarte, M.F. Vieira, F. Viana and R. Calinas: Intermetallics Vol. 14 (2006), p.1157.

DOI: 10.1016/j.intermet.2005.12.012

Google Scholar

[11] M. Ghosh and S. Chatterjee: Mater. Sci. Eng. A Vol. 358 (2003), p.152.

Google Scholar

[12] L. Duarte, A.S. Ramos, M.F. Vieira, F. Viana, M.T. Vieira and M. Koçak: Intermetallics Vol. 14 (2006), p.1151.

DOI: 10.1016/j.intermet.2005.12.011

Google Scholar

[13] J. Noro, A.S. Ramos and M.T. Vieira: Intermetallics Vol. 16 (2008), p.1061.

Google Scholar

[14] W.C. Oliver and G.M. Pharr: J. Mater. Res. Vol. 7 (1992), p.1564.

Google Scholar

[15] M.T. Vieira, J. Noro and A.S. Ramos, in: Structural Aluminides for Elevated Temperatures, edited by Y-W. Kim, D. Morris, R. Yang and C. Leyens, pp.391-398, The Minerals, Metals and Materials Society (TMS), USA (2008).

Google Scholar

[16] Z. Guoge, R.S. Chandel, S.H. Pheow and H.H. Hoon: Mater. Manuf. Processes Vol. 21 (2006), p.453.

Google Scholar

[17] K. Zeng, R. Schmid-Fetzer, B. Huneau, P. Rogl and J. Bauer: Intermetallics Vol. 7 (1999), p.1347.

Google Scholar

[18] J.C. Schuster: Intermetallics Vol. 14 (2006), p.1304.

Google Scholar

[19] J. Bursik and P. Broz: Intermetallics Vol. 17 (2009), p.591.

Google Scholar

[20] K. Chvátalová, J. Houserová, M. Sob and J. Vrest'ál: J. Alloys Compd. Vol. 378 (2004), p.71.

Google Scholar

[21] J. Tomiska: J. Alloys Compd. Vol. 379 (2004), p.176.

Google Scholar