Significance of Buoyancy, Velocity Index and Thickness of an Upper Horizontal Surface of a Paraboloid of Revolution: The Case of Non-Newtonian Carreau Fluid

Article Preview

Abstract:

The problem of fluid flow on air-jet weaving machine (i.e. mechanical engineering and chemical engineering) is deliberated upon in this report using the case of non-Newtonian Carreau fluid flow. In this report, the boundary layer flow of the fluid over an upper horizontal surface of a paraboloid of revolution is presented. The dimensional governing equations were non-dimensionalized, parameterized, solved numerically and discussed. Maximum horizontal velocity is ascertained at smaller values of thickness parameter, a larger value of buoyancy related parameter and the flow is characterized as shear-thickening. Local skin friction coefficient is an increasing and a decreasing property of Deborah number for Shear thinning and Shear-thickening cases of the flow respectively. The velocity of the flow parallel to the surface (uhspr) is a decreasing property of thickness parameter and increasing function of velocity index parameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

550-561

Citation:

Online since:

September 2018

Export:

Price:

* - Corresponding Author

[1] Q. H. Nguyen, N. D. Nguyen, Incompressible Non-Newtonian Fluid Flows, Continuum Mechanics - Progress in Fundamentals and Engineering Applications, Dr. Yong Gan (Ed.), ISBN: 978-953-51-0447-6, In Tech, Available from: http://www.intechopen.com/books/continuum-mechanics-progress-infundamentals-and engineering-applications/non-newtonian-fluid-flows, (2012).

DOI: 10.5772/26091

Google Scholar

[2] M. M. Cross, Rheology of Non-Newtonian Fluids - A New Flow Equation for Pseudoplastic Systems, Journal of Colloid Science, 20 (1965) 417 - 437.

DOI: 10.1016/0095-8522(65)90022-x

Google Scholar

[3] V. O. Yablonskii, Hydrodynamics of nonlinear Viscoplastic fluid in cylindrical hydrocyclone. Russian Journal of Applied Chemistry, 86(8) (2013) 1212-1219.

DOI: 10.1134/s1070427213080107

Google Scholar

[4] H. A. Barnes, Thixotropy - a review. Journal of Non-Newtonian fluid mechanics, 70(1-2) (1997) 1-33.

Google Scholar

[5] M. M. Cross, Relation between viscoelasticity and shear-thinning behaviour in liquids. Rheologica Acta 18(5), (1979) 609-614.

DOI: 10.1007/bf01520357

Google Scholar

[6] Z. Mimouni, The Rheological Behavior of Human Blood—Comparison of Two Models, Open Journal of Biophysics 6(2), (2016) 29-33.

Google Scholar

[7] M. Renardy, Y. Renardy, Linear Stability of Plane Couette Flow of an Upper Convected Maxwell Fluid. (1986).

DOI: 10.21236/ada167927

Google Scholar

[8] M. Renardy, On control of shear flow of an upper convected Maxwell fluid. ZAMM, 87(3), (2007) 213 – 218.

DOI: 10.1002/zamm.200610313

Google Scholar

[9] T. Hayat, M. Awais, Three-dimensional flow of upper-convected Maxwell (UCM) fluid. International Journal for Numerical Methods in Fluids, 66(7), (2010) 875–884.

DOI: 10.1002/fld.2289

Google Scholar

[10] O. K. Koríko, K. S. Adegbie, A. J. Omowaye, I. L. Animasaun, Boundary layer analysis of upper convected Maxwell fluid flow with variable thermo-physical properties over a melting thermally stratified surface, FUTA Journal of Research in Sciences, 12 (2) (2016).

DOI: 10.4236/am.2015.68129

Google Scholar

[11] A. J. Omowaye, I. L. Animasaun, Upper-Convected Maxwell Fluid Flow with Variable Thermo-Physical Properties over a Melting Surface Situated in Hot Environment Subject to Thermal Stratification. Journal of Applied Fluid Mechanics, 9(6), (2016).

DOI: 10.18869/acadpub.jafm.68.235.24939

Google Scholar

[12] S. Nadeem, S. T. Hussain,, C. Lee, Flow of a Williamson fluid over a stretching sheet. Brazilian journal of chemical engineering, 30(3), (2013) 619-625.

DOI: 10.1590/s0104-66322013000300019

Google Scholar

[13] K. Vajravelu, S. Sreenadh, K. Rajanikanth, C. Lee, Peristaltic transport of a Williamson fluid in asymmetric channels with permeable walls. Nonlinear Analysis: Real World Applications, 13(6) (2012) 2804-2822.

DOI: 10.1016/j.nonrwa.2012.04.008

Google Scholar

[14] O. A. Bég, M. Keimanesh, M.M. Rashidi, M. Davoodi, S. T. Branch. Multi-Step dtm simulation of magneto-peristaltic flow of a conducting Williamson viscoelastic fluid. Int. J. Appl. Math. Mech, 9(6) (2013) 1-19.

Google Scholar

[15] O. A. Abegunrin, I. L. Animasaun, Motion of Williamson Fluid over an Upper Horizontal Surface of a Paraboloid of Revolution due to Partial Slip and Buoyancy: Boundary Layer Analysis. In Defect and Diffusion Forum 378, (2017) 16-27.

DOI: 10.4028/www.scientific.net/ddf.378.16

Google Scholar

[16] R. Sivaraj, B. R. Kumar, Unsteady MHD dusty viscoelastic fluid Couette flow in an irregular channel with varying mass diffusion. International Journal of Heat and Mass Transfer, 55(11-12) (2012) 3076-3089.

DOI: 10.1016/j.ijheatmasstransfer.2012.01.049

Google Scholar

[17] R. Sivaraj, B. R Kumar, Chemically reacting dusty viscoelastic fluid flow in an irregular channel with convective boundary. Ain Shams Engineering Journal, 4(1), (2013) 93–101.

DOI: 10.1016/j.asej.2012.06.005

Google Scholar

[18] G. Makanda, O. D. Makinde, P. Sibanda, Natural Convection of Viscoelastic Fluid from a Cone Embedded in a Porous Medium with Viscous Dissipation. Mathematical Problems in Engineering, 2013, (2013) 1–11.

DOI: 10.1155/2013/934712

Google Scholar

[19] O.A. Bég, O. D. Makinde, Viscoelastic flow and species transfer in a Darcian high-permeability channel. Journal of Petroleum Science and Engineering, 76(3-4) (2011) 93 - 99.

DOI: 10.1016/j.petrol.2011.01.008

Google Scholar

[20] J. Benazir, A., R. Sivaraj, M. M. Rashidi. Comparison between Casson Fluid Flow in the Presence of Heat and Mass Transfer From a Vertical Cone and Flat Plate. Journal of Heat Transfer, 138(11), (2016) 112005.

DOI: 10.1115/1.4033971

Google Scholar

[21] M. S. Kumar, N. Sandeep, B. R. Kumar, S. Saleem. A comparative study of chemically reacting 2D flow of Casson and Maxwell fluids. Alexandria Engineering Journal. (2017).

DOI: 10.1016/j.aej.2017.05.010

Google Scholar

[22] C. S. K. Raju, N. Sandeep, S. Saleem, Effects of induced magnetic field and homogeneous–heterogeneous reactions on stagnation flow of a Casson fluid. Engineering Science and Technology, an International Journal, 19(2), (2016) 875–887.

DOI: 10.1016/j.jestch.2015.12.004

Google Scholar

[23] P. J. Carreau, Rheological Equations from Molecular Network Theories. Transactions of the Society of Rheology, 16(1) (1972) 99 – 127.

DOI: 10.1122/1.549276

Google Scholar

[24] P. J. Carreau, D. De Kee, M. Daroux, An analysis of the viscous behaviour of polymeric solutions, The Canadian Journal of Chemical Engineering, 57(2) 135 – 140.

DOI: 10.1002/cjce.5450570202

Google Scholar

[25] H. B. Santosh, C. S. K. Raju, O. D. Makinde, The Flow of Radiated Carreau Dusty Fluid over Exponentially Stretching Sheet with Partial Slip at the Wall, Diffusion Foundations 16, (2018) 96-108.

DOI: 10.4028/www.scientific.net/df.16.96

Google Scholar

[26] R. Ellahi, M. M. Bhatti, C. M. Khalique, Three-dimensional flow analysis of Carreau fluid model induced by peristaltic wave in the presence of magnetic field. Journal of Molecular Liquids, 241 (2017) 1059–1068.

DOI: 10.1016/j.molliq.2017.06.082

Google Scholar

[27] M. Gnaneswara Reddy, M. Sudha Rani, O. D. Makinde, Effects of Nonlinear Thermal Radiation and Thermo-Diffusion on MHD Carreau Fluid Flow Past a Stretching Surface with Slip, Diffusion Foundations, 11 (2017) 57-71.

DOI: 10.4028/www.scientific.net/df.11.57

Google Scholar

[28] M. Gnaneswara Reddy, B. C. Prasannakumara, O. D. Makinde, Cross Diffusion Impacts on Hydromagnetic Radiative Peristaltic Carreau-Casson Nanofluids Flow in an Irregular Channel, Defect and Diffusion Forum 377, (2017) 62-83.

DOI: 10.4028/www.scientific.net/ddf.377.62

Google Scholar

[29] B. J. Gireesha, P. B. S. Kumar, B. Mahanthesh, S. A. Shehzad, A. Rauf, Nonlinear 3D flow of Casson-Carreau fluids with homogeneous–heterogeneous reactions: A comparative study, Results in physics 7 (2017) 2762-2770.

DOI: 10.1016/j.rinp.2017.07.060

Google Scholar

[30] C. S. K. Raju, M. M. Hoque, P. Priyadharshini, B. Mahanthesh, B. J. Gireesha, Cross diffusion effects on magnetohydrodynamic slip flow of Carreau liquid over a slendering sheet with non-uniform heat source/sink. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(4) (2018) 222.

DOI: 10.1007/s40430-018-1142-4

Google Scholar

[31] O. K. Koriko, I. L. Animasaun, B. Mahanthesh, S. Saleem, G. Sarojamma, R. Sivaraj, Heat transfer in the flow of blood-gold Carreau nanofluid induced by partial slip and buoyancy. Heat Transfer-Asian Research. (2018) in-press.

DOI: 10.1002/htj.21342

Google Scholar

[32] I. L. Animasaun, I. Pop, Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream. Alexandria Engineering Journal, 56(4) (2017).

DOI: 10.1016/j.aej.2017.07.005

Google Scholar

[33] O. D. Makinde, N. Sandeep, T. M. Ajayi, I. L. Animasaun, Numerical Exploration of Heat Transfer and Lorentz Force Effects on the Flow of MHD Casson Fluid over an Upper Horizontal Surface of a Thermally Stratified Melting Surface of a Paraboloid of Revolution. International Journal of Nonlinear Sciences and Numerical Simulation, 19(2) (2018).

DOI: 10.1515/ijnsns-2016-0087

Google Scholar

[34] S. U. Mamatha, Mahesha, C. S. K. Raju, O. D. Makinde, Effect of Convective Boundary Condition on MHD Carreau Dusty Fluid over a Stretching Sheet with Heat Source. Defect and Diffusion Forum, 377, (2017) 233–241.

DOI: 10.4028/www.scientific.net/ddf.377.233

Google Scholar

[35] M. Gnaneswara Reddy, B. C. Prasannakumara, O. D. Makinde, Cross Diffusion Impacts on Hydromagnetic Radiative Peristaltic Carreau-Casson Nanofluids Flow in an Irregular Channel. Defect and Diffusion Forum, 377 (2017) 62–83.

DOI: 10.4028/www.scientific.net/ddf.377.62

Google Scholar

[36] O. D. Makinde, W. A. Khan, J. R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. International Journal of Heat and Mass Transfer, 93 (2016).

DOI: 10.1016/j.ijheatmasstransfer.2015.10.050

Google Scholar

[37] O. D. Makinde, I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. Journal of Molecular Liquids, 221 (2016).

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[38] G. K. Ramesh, B. C. Prasannakumara, B. J. Gireesha, M. M. Rashidi, Casson Fluid Flow near the Stagnation Point over a Stretching Sheet with Variable Thickness and Radiation. Journal of Applied Fluid Mechanics, 9(3) (2016) 1115–1022.

DOI: 10.18869/acadpub.jafm.68.228.24584

Google Scholar

[39] G. K. Ramesh, B. C. P. Kumara, B. J. Gireesha, R. S. Reddy Gorla, MHD Stagnation Point Flow of Nanofluid Towards a Stretching Surface with Variable Thickness and Thermal Radiation. Journal of Nanofluids, 4(2) (2015) 247–253.

DOI: 10.1166/jon.2015.1144

Google Scholar

[40] B. C. Prasanna ‎Kumara, ‎‎G. K‎. ‎ ‎Ramesh‎, A. J. Chamkha‎, B. J. ‎Gireesha, Stagnation-point flow of a viscous fluid towards a stretching surface with variable thickness and thermal ‎radiation‎, 7(1) (2015) 77 – 85.

Google Scholar

[41] A. Pantokratoras, Non-similar Blasius and Sakiadis flow of a non-Newtonian Carreau fluid, Journal of the Taiwan Institute of Chemical Engineers 56 (2015) 1–5.

DOI: 10.1016/j.jtice.2015.03.021

Google Scholar

[42] P. M. Coelho, F. T. Pinho, Vortex shedding in cylinder flow of shear-thinning fluids. III. Pressure measurements, J Non-Newtonian Fluid Mech 2003, (2003) 121, 55–68.

DOI: 10.1016/j.jnnfm.2004.04.004

Google Scholar

[43] L. F. Shampine, J. Kierzenka, M. W. Reichelt, Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c, (2000) 1—27.

Google Scholar

[44] J. Kierzenka, L. F. Shampine, A BVP solver based on residual control and the Maltab PSE, ACM Trans. Math. Softw. (TOMS) 27, (2001) 299 – 316.

DOI: 10.1145/502800.502801

Google Scholar

[45] I. Gladwell, L. F. Shampine, S. Thompson, Solving ODEs with MATLAB, Cambridge University, (2003) 1 - 16.

DOI: 10.1017/cbo9780511615542

Google Scholar

[46] X. Hu, Tg Ning, L. Pei, Q. Chen, J. Li, A simple error control strategy using MATLAB BVP solvers forYb3+-doped fiber lasers, Optik - International Journal for Light and Electron Optics 126, (2015) 3446 - 3451.

DOI: 10.1016/j.ijleo.2015.07.122

Google Scholar

[47] X. Hu, F. Zeng, T. Ning, L. Pei, Q. Chen, L. Zhang, Y. Pang, S. Zhao, S. Jie, J. Li, C. Zhang, Good guess functions for MATLAB BVP solvers in multipoint pumping Yb3+-doped fiber lasers, Optik - International Journal for Light and Electron Optics, 126 (2015) 3145 - 3149.

DOI: 10.1016/j.ijleo.2015.07.070

Google Scholar

[48] L. Li, P. Lin, X. Si, L. Zheng, A numerical study for multiple solutions of a singular boundary value problem arising from laminar flow in a porous pipe with moving wall, Journal of Computational and Applied Mathematics, (2016) 1 - 39.

DOI: 10.1016/j.cam.2016.10.002

Google Scholar

[49] T. M. Ajayi, A. J. Omowaye, I. L. Animasaun, Viscous Dissipation Effects on the Motion of Casson Fluid over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution:Boundary Layer Analysis, Journal of Applied Mathematics, 1697135 (2017).

DOI: 10.1155/2017/1697135

Google Scholar

[50] A. S. Rao, V. R. Prasad, N. B. Reddy, O. A. Beg, Heat Transfer in a Casson Rheological Fluid from a Semi-infinite Vertical Plate with Partial Slip, Heat Trans-Asian Research (2013).

DOI: 10.1002/htj.21115

Google Scholar

[51] N. A. Shah, I. L. Animasaun, R. O. Ibraheem, H. A. Babatunde, N. Sandeep, I. Pop, Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. Journal of Molecular Liquids 249 (2018).

DOI: 10.1016/j.molliq.2017.11.042

Google Scholar