Grain Boundary Diffusion in Nanocrystalline Materials Produced by Severe Plastic Deformation

Article Preview

Abstract:

The model of diffusional mass transfer in the medium with a strong spatial dependence of diffusivity and its application to the grain boundary (GB) diffusion problem is presented. A significant decrease of diffusion activation energy is shown to take place takes place in the vicinity of non-equilibrium grain boundary, which leads to the formation of a region of enhanced diffusion. The generalization of grain boundary diffusion theory is given which accounts for the diffusion enhancement near GB. An original mathematical approach is developed and general asymptotic solutions of the one-and two-dimensional diffusion problems are derived for two types of diffusant source — constant and instant. The applicability domain of presented model is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-143

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] Zehetbauer M., Valiev R. Nanomaterials by Severe Plastic deformation. Wiley-VCH, Weinheim, (2004).

Google Scholar

[2] Nasarov A.A., Mulyukov R.R. Nanostructured materials, in: Goddart W.A., Brenner D., Lyshevski S., and Iafrate G. (Eds. ), Handbook of nanoscience, engineering, and technology. CRC Press, Boca Raton, London, New York, Washington, 2002, pp.22-1.

Google Scholar

[3] Koch C.C., Nanostructured Materials: Processing, Properties and Applications. Andrews Appl. Sci. Publ., New York, (2007).

Google Scholar

[4] Valiev R.Z., Islamgaliev R.K., Alexandrov I.V., Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[5] Vasil'ev L.S., Lomaev I.L., On possible mechanisms of nanostructure evolution upon severe plastic deformation of metals and alloys. Phys. Met. Metallogr. 101 (2006) 386–392.

DOI: 10.1134/s0031918x06040120

Google Scholar

[6] Zehetbauer M.L., Steiner G., Schafler E., Korznikov A., Korznikova E., Deformation induced vacancies with SPD: measurements and modeling, Mater. Sci. Forum 503–504 (2006) 57–64.

DOI: 10.4028/www.scientific.net/msf.503-504.57

Google Scholar

[7] Vasil'ev L.S., Lomaev I.L., Structural Transformations, Distribution of Nonequilibrium Vacancies, and Anomalous Diffusion in Plastically Deformed Metals and Alloys upon Mechanical Alloying, Phys. Met. Metallogr. 111 (2011) 1–12.

DOI: 10.1134/s0031918x11010145

Google Scholar

[8] Kolobov Yu.R., Valiev R.Z., Grain Boundary Diffusion and Properties of Nanostructured Materials. Cambridge International Science, Cambridge, (2007).

Google Scholar

[9] Chen Y. and Schuh Chr., Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials, Scr. Mater. 57 (2007) 253–256.

DOI: 10.1016/j.scriptamat.2007.03.057

Google Scholar

[10] Chuvildeev V.N., Kopylov V.I., Structure and Properties of Materials Produced by Severe Plastic Deformation, in: Segal M.V. (Ed. ), Fundamentals and Engineering of Severe Plastic Deformation . Nova Science Publishers, Hauppauge, New York, (2010).

Google Scholar

[11] Kaibyshev O.A., Valiev R.Z., Grain boundaries and properties of metals. Metallurgia Publ., Moscow, (1987).

Google Scholar

[12] Kaur I., GustW., Mishin Y. Fundamentals of Grain and Interphase Boundary Diffusion, 3ed Revised and Enlarged Edition. Wiley, Chichester, United Kingdom, (1995).

Google Scholar

[13] Mehrer H., Diffusion in Solids. Springer-Verlag, Berlin, Heidelberg, (2007).

Google Scholar

[14] Belova I.V., Murch G.E., Analysis of kinetics regimes in grain boundary self-diffusion, Philos. Mag. 89 (2009) 665–675.

DOI: 10.1080/14786430802555714

Google Scholar

[15] Kondratev V.V., Trachtenberg I. Sh., Intergranular diffusion in real polycrystals, Phys. Stat. Sol. B 171 (1992) 303–315.

DOI: 10.1002/pssb.2221710203

Google Scholar

[16] Kesarev A.G., Kondrat'ev V.V., Lomayev I.L., Special Features of Grain Boundary Diffusion in Nanostructural and Submicrocrystalline Materials Caused by Structural Heterogeneity of Grain Boundaries, Phys. Met. Metallogr. 113 (2012) 1107–1113.

DOI: 10.1134/s0031918x12120046

Google Scholar

[17] Mishin Y., Herzig C., Bernardini J., Gust W., Grain boundary diffusion: fundamentals to recent developments, Int. Mater. Rev. 42 (1997) 155–178.

DOI: 10.1179/imr.1997.42.4.155

Google Scholar

[18] Herzig C., Mishin Y., Grain Boundary Diffusion, in: Heitjans P., Kärger J. (Eds. ), Metals in Diffusion in Condensed Matter. Springer, Berlin, Heidelberg, (2005).

DOI: 10.1007/3-540-30970-5_8

Google Scholar

[19] Mishin Y.M., Yurovskii I.V., A generalized model of grain boundary diffusion, Philos. Mag. A 64 (1991) 1239–1249.

Google Scholar

[20] Klotsman S.M., Diffusion in nanocrystalline materials, Fiz. Met. Metalloved., 76 (1993) 5–18.

Google Scholar

[21] Kaigorodov V.N., Klotsman S.M., Shlyapnikov S.N., Impurity states in grain boundaries and adjacent crystalline regions, Phys. Rev. B. 49 (1994) 9387.

DOI: 10.1103/physrevb.49.9387

Google Scholar

[22] Popov V.V., Analysis of Possibilities of Fisher's Model Development, Solid State Phenom 138 (2008) 133–144.

Google Scholar

[23] Kesarev A.G., Kondrat'ev V.V., Some problems of diffusion theory in nanostructured materials, Inorg. Mat: App. Res 2 (2011) 65–69.

Google Scholar

[24] Kesarev A.G., Kondrat'ev V.V., The Effect of Internal Stresses on Diffusion in Nanostructured Allows, Phys. Met. Metallogr. 104 (2007) 1–7.

Google Scholar

[25] Hirth J.P., Lote J. Theory of Dislocations. McGraw-Hill, New York, (1967).

Google Scholar

[26] Landoldt-Bornstein — New Series III/26: Atomic Defects and Diffusion. Diffusion in Solid Metals and Alloys. Ed. by Mehrer H. Berlin: Springer; 1990 (DOI: 10. 1007/b37801).

Google Scholar

[27] Nayfeh A. Introduction to Perturbation Techniques. Wiley, New York, (1981).

Google Scholar

[28] Kesarev A.G., Kondrat'ev V.V., To the Theory of Diffusion in Inhomogeneous Media: Short Times of the Process, Phys. Met. Metallogr. 106 (2008) 327–331.

DOI: 10.1134/s0031918x08100013

Google Scholar

[29] Kowall J., Peak D., Corbett J.W. Impurity-concentration profile for an exponentially decaying diffusion coefficient in irradiation enhanced diffusion, Phys. Rev. B. 13 (1976) 477–478.

DOI: 10.1103/physrevb.13.477

Google Scholar

[30] Kesarev A.G., Kondrat'ev V.V., Lomayev I.L. On the Theory of Grain Boundary Diffusion in Nanostructured Materials under Conditions of Saturation of the Subboundary Region by the Diffusant, Phys. Met. Metallogr. 112 (2011) 44–52.

DOI: 10.1134/s0031918x11010285

Google Scholar

[31] Kesarev A.G., Kondrat'ev V.V., Lomayev I.L., Description of grain boundary diffusion in nanostructured materials from thin-film dissusant, Phys. Met. Metallogr. 116 (2015) In press.

DOI: 10.1134/s0031918x15030072

Google Scholar

[32] Douglas J., Peaceman D.W., Numerical solution of two-dimensional heat-flow problems, AIChE Journal 1 (1955) 505–512.

DOI: 10.1002/aic.690010421

Google Scholar

[33] Peaceman D.W., Rachford J., The Numerical Solution of Parabolic and Elliptic Differential Equations, J. Soc. Ind. Appl. Math. 3 (1955) 28–41.

Google Scholar

[34] Divinsky S.V., Reglitz G., Rosner H., Estrin Y., Wilde G., Ultra-fast diffusion channels pure Ni severely deformed by equal-channel angular pressing, Acta Mater. 59 (2011) 1974–(1985).

DOI: 10.1016/j.actamat.2010.11.063

Google Scholar

[35] Grabovetskaya G.P., Ratochka I.V., Kolobov Y.R., Puchkareva L.N., Comparative-studies of grain-boundary cop per diffusion in submicro-crystalline and coarse-crystalline nickel, Fizika metallov i metallovedenie, 83 (1997) 112–116.

Google Scholar

[36] Ribbe J., Baither D., Schmitz G., Divinski S.V., Ultrafast diffusion and internal porosity in ultrafine-grained copper-lead alloy prepared by equal channel angular pressing, Scr. Mater. 61 (2009) 129–132.

DOI: 10.1016/j.scriptamat.2009.03.029

Google Scholar