Biomimetic Model of Articular Cartilage Based on In Vitro Experiments

Article Preview

Abstract:

Articular cartilage is a complicated material to model for a variety of reasons: its biphasic/triphasic properties, heterogeneous structure, compressibility, unique geometry, and variance between samples. However, the applications for a biomimetic, cartilage-like material are numerous and include: porous bearings, viscous dampers, robotic linkages, artificial joints, etc. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined compression. The response is consistent with simple spring and damper systems, and gives a storage and loss moduli. This model is proposed for use in evaluating biomimetic materials, and can be incorporated into large-scale dynamic analyses to account for motion or impact. The proposed characterization is suited for high-level analysis of multi-phase materials, where separating the contribution of each phase is not desired.

You might also be interested in these eBooks

Info:

Pages:

75-91

Citation:

Online since:

August 2014

Export:

Price:

* - Corresponding Author

[1] Grybos GR (1991) The dynamics of a viscoelastic rotor in flexible bearings. Archive of Applied Mechanics 61(1): 479-487.

DOI: 10.1007/bf00790139

Google Scholar

[2] Friswell M (2007) The response of rotating machines on viscoelastic supports. International Review of Mechanical Engineering 1(1): 32-40.

Google Scholar

[3] Elsharkawy AA, Nassar MM (1996) Hydrodynamic lubrication of squeeze-film porous bearings. Acta Mechanica 118: 121-134.

DOI: 10.1007/bf01410512

Google Scholar

[4] Charnley J (1960) The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Annals of the rheumatic diseases 19: 10-9.

DOI: 10.1136/ard.19.1.10

Google Scholar

[5] McCutchen CW (1962) The frictional properties of animal joints. Wear 5(1): 1-17.

Google Scholar

[6] Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42(9): 1163-76.

DOI: 10.1016/j.jbiomech.2009.04.040

Google Scholar

[7] Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC (1997) Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. Journal of Biomechanics 30(11-12): 1157-1164.

DOI: 10.1016/s0021-9290(97)85606-0

Google Scholar

[8] Ateshian GA, Wang H, Lai WM (1998) The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. Journal of Tribology 120(2): 241-248.

DOI: 10.1115/1.2834416

Google Scholar

[9] Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. Journal of Biomechanical Engineering 102(1): 73-84.

DOI: 10.1115/1.3138202

Google Scholar

[10] Lai WM, Mow VC, Roth V (1981) Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. Journal of Biomechanical Engineering 103(2): 61-66.

DOI: 10.1115/1.3138261

Google Scholar

[11] Armstrong CG, Lai WM, Mow VC (1984) An analysis of the unconfined compression of articular cartilage. Journal of Biomechanical Engineering 106(2): 165-173.

DOI: 10.1115/1.3138475

Google Scholar

[12] Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113(3): 245-58.

DOI: 10.1115/1.2894880

Google Scholar

[13] Mow VC, Ateshian GA, Spilker RL (1993) Biomechanics of diarthrodial joints: a review of twenty years of progress. Journal of Biomechanical Engineering 115(4B): 460-7.

DOI: 10.1115/1.2895525

Google Scholar

[14] Mow V, Gu W, Chen F (2005) Basic Orthopaedic Biomechanics & Mechano-biology, 3rd edn, Lippincott Williams & Wilkins, Philadelphia, PA, chap Structure and function of articular cartilage and meniscus, pp.181-258.

DOI: 10.1186/1475-925x-4-28

Google Scholar

[15] Coletti JM, Akeson WH, Woo SLY (1972) A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface. The Journal of Bone and Joint Surgery 54-A(1): 147- -160.

DOI: 10.2106/00004623-197254010-00014

Google Scholar

[16] Parsons JR, Black J (1977) The viscoelastic shear behavior of normal rabbit articular cartilage. Journal of Biomechanics 10(1): 21-29.

DOI: 10.1016/0021-9290(77)90026-4

Google Scholar

[17] Mak AF (1986) The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. Journal of Biomechanical Engineering 108(2): 123-130.

DOI: 10.1115/1.3138591

Google Scholar

[18] Woo SLY, Simon BR, Kuei SC, Akeson WH (1980) Quasi-linear viscoelastic properties of normal articular cartilage. Journal of Biomechanical Engineering 102(2): 85-90.

DOI: 10.1115/1.3138220

Google Scholar

[19] Fung YC (1967) Elasticity of soft tissues in simple elongation. Am J Physiol 213(6): 1532-44.

Google Scholar

[20] Mow VC, Lipshitz H, Glimcher MJ (1977) Mechanisms for stress relaxation in articular cartilage. In: Society TOR (ed) 23rd Annual Meeting of The Orthopaedic Research Society, The Orthopaedic Research Society, Las Vegas, Nevada, vol 2, p.71.

Google Scholar

[21] Simon BR, Coats RS, Woo SLY (1984) Relaxation and creep quasilinear viscoelastic models for normal articular cartilage. Journal of Biomechanical Engineering 106(2): 159-164.

DOI: 10.1115/1.3138474

Google Scholar

[22] Wang JL, Parnianpour M, ShiraziAdl A, Engin AE (1997) Failure criterion of collagen fiber: Viscoelastic behavior simulated by using load control data. Theoretical and Applied Fracture Mechanics 27(1): 1-12.

DOI: 10.1016/s0167-8442(97)00002-5

Google Scholar

[23] Ehlers W, Markert B (2000) A linear viscoelastic two-phase model for soft tissues.: Application to articular cartilage. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 80(S1): 149-152.

DOI: 10.1002/zamm.20000801338

Google Scholar

[24] Ehlers W, Markert B (2001) A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. Journal of Biomechanical Engineering 123(5): 418-424.

DOI: 10.1115/1.1388292

Google Scholar

[25] Wilson W, van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R (2004) Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. Journal of Biomechanics 37(3): 357-366.

DOI: 10.1016/s0021-9290(03)00267-7

Google Scholar

[26] Wilson W, van Donkelaar CC, van Rietbergen B, Huiskes R (2005) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. Journal of Biomechanics 38(6): 1195-1204.

DOI: 10.1016/j.jbiomech.2004.07.003

Google Scholar

[27] DiSilvestro MR, Suh JKF (2001) A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. Journal of Biomechanics 34(4): 519-525.

DOI: 10.1016/s0021-9290(00)00224-4

Google Scholar

[28] Garcia JJ, Cortes DH (2006) A nonlinear biphasic viscohyperelastic model for articular cartilage. Journal of Biomechanics 39(16): 2991-8.

DOI: 10.1016/j.jbiomech.2005.10.017

Google Scholar

[29] Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu CJ, Lammi MJ, Korhonen RK (2008).

Google Scholar

[30] Argatov II (2013) Mathematical modeling of linear viscoelastic impact: Application to drop impact testing of articular cartilage. Tribology International 63: 213-225.

DOI: 10.1016/j.triboint.2012.09.015

Google Scholar

[31] Eisenfeld J, Mow VC, Lipshitz H (1978) Mathematical analysis of stress relaxation in articular cartilage during compression. Mathematical Biosciences 39(1-2): 97-112.

DOI: 10.1016/0025-5564(78)90029-9

Google Scholar

[32] Mow VC, Mansour JM (1977) The nonlinear interaction between cartilage deformation and interstitial fluid flow. Journal of Biomechanics 10(1): 31-39.

DOI: 10.1016/0021-9290(77)90027-6

Google Scholar

[33] Desai CS, Abel JF (1972) Introduction to the Finite Element Method. Van Nostrand Reinhold Company.

Google Scholar

[34] Malda J, Benders KEM, Klein TJ, de Grauw JC, Kik MJL, Hutmacher DW, Saris DBF, van Weeren PR, Dhert WJA (2012).

DOI: 10.1016/j.joca.2012.06.005

Google Scholar

[35] Gurtin ME, Sternberg E (1962) On the linear theory of viscoelasticity. Archive for Rational Mechanics and Analysis 11(1): 291-356.

DOI: 10.1007/bf00253942

Google Scholar

[36] Szumski RG, Green I (1991) Constitutive laws in time and frequency domains for linear viscoelastic materials. J Acoustical Soc of America 90(40): 2292.

DOI: 10.1121/1.401099

Google Scholar

[37] Miller B, Green I (1997) On the stability of gas lubricated triboelements using the step jump method. Journal of Tribology-Transactions of the Asme 119(1): 193-199.

DOI: 10.1115/1.2832458

Google Scholar

[38] Kestin J, Sokolov M, Wakeham WA (1978) Viscosity of liquid water in the range -8 c to 150 c. JPhys Chem Ref Data 7(3): 941-948.

DOI: 10.1063/1.555581

Google Scholar

[39] June RK, Ly S, Fyhrie DP (2009a) Cartilage stress-relaxation proceeds slower at higher compressive strains. Archives of Biochemistry and Biophysics 483(1): 75-80.

DOI: 10.1016/j.abb.2008.11.029

Google Scholar