Nanomagnetic Arrays Formed with the Biomineralization Protein Mms6

Article Preview

Abstract:

Many Modern Technologies, such as High Density Data Storage, Require Monodispersed Magnetic Nanoparticles (MNPs), which Have a Consistent Magnetic Behavior, Specifically Immobilized onto a Patterned Surface. Current Methods for Synthesizing Uniform Mnps Require High Temperatures and Harsh Chemicals, which Is Not Environmentally Friendly. Also, the Particles Are Expensive to Make and Expensive to Pattern Using Conventional Lithography Methods. Magnetic Bacteria Are Able to Synthesize Consistent Mnps in Vivo Using Biomineralization Proteins inside Magnetosome Vesicles to Control Particle Size and Shape and Make Single Domain Mnps. Mms6 Is a Biomineralization Protein that Is Able to Template Cubo-Octahedral MNP Formation in Vitro. it Is Thought the N-Terminus Helps Integrate the Protein into the Magnetosome Membrane, and the C-Terminus Interacts with Magnetite during Nucleation and/or MNP Growth. by Selectively Attaching Mms6 to a Patterned Self Assembled Monolayer via the N-Terminus, Patterns of Uniform Magnetite Mnps Are Templated in Situ. this Also Requires Careful Selection of the Mineralization Solution Used to Mineralize the Patterned Mms6. here we Evaluate some Low Temperature (room Temperature to < 100°C) Methods of Magnetite Formation to Produce Monodispersed Magnetite Mnps onto Immobilized Mms6. Room Temperature Co-Precipitation (RTCP) Was Found to Be Unsuitable, as the Magnetite Does Not Form on the Immobilized Mms6, but Appears to Form Rapidly as Base Is Added. Partial Oxidation of Ferrous Hydroxide (POFH) Was Found to Be Able to Form Consistent Magnetite Mnps on the Immobilized Mms6, as the Reactants Gradually Mature to Form Magnetite over a few Hours (at 80°C) or a few Days (room Temperature). by Carefully Controlling the Type of Base Used, the Ratio of the Reactants and the Temperature and Duration of the POFH Mineralization Reaction, this System Was Optimized to Produce Consistent Mnps (340 ± 54 Nm, Coercivity 109 Oe) on the Immobilized Mms6, with Scarcely any Mineralization on the Anti-Biofouling Background. the Mnps Are Ferrimagnetic, and Appear to Be Exchange Coupled across Multiple Particles in MFM Measurements. the Specificity of this Method towards Precise Magnetite Mineralization under Relatively Mild Conditions May Be Adapted to Nanoscale Patterning of Multiple Biotemplated Materials, by Using other Biomineralization Proteins or Peptides. this Would Allow the Fabrication of Cheaper, More Environmentally Friendly Components for Devices of the Future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-146

Citation:

Online since:

February 2012

Export:

Price:

[1] S.J. Lister, T. Thomson, J. Kohlbrecher, K. Takano, V. Venkataramana, S.J. Ray, M.P. Wismayer, M.A. d. Vries, H. Do, Y. Ikeda, S.L. Lee, Size-dependent reversal of grains in perpendicular magnetic recording media measured by small-angle polarized neutron scattering, Appl. Phys. Lett., 97 (2010).

DOI: 10.1063/1.3486680

Google Scholar

[2] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, Phys. D: Appl. Phys., (2003) R167.

DOI: 10.1088/0022-3727/36/13/201

Google Scholar

[3] S. Staniland, W. Williams, N. Telling, L. Van Der, A. Harrison, B. Ward, Controlled cobalt doping of magnetosomes in vivo, Nat. Nanotechnol., 3 (2008) 158-162.

DOI: 10.1038/nnano.2008.35

Google Scholar

[4] D.J. Dunlop, Superparamagnetic and Single-Domain Threshold Sizes in Magnetite, J. Geophys. Res., 78 (1973) 1780-1793.

DOI: 10.1029/jb078i011p01780

Google Scholar

[5] A.H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth, Nanoengineering of a magnetically separable hydrogenation catalyst, Angew. Chem. Int. Ed., 43 (2004) 4303-4306.

DOI: 10.1002/anie.200454222

Google Scholar

[6] S.C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals, Angew. Chem. Int. Ed., 43 (2004) 5645-5649.

DOI: 10.1002/anie.200460552

Google Scholar

[7] C.C. Berry, A.S.G. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine, Phys. D: Appl. Phys., 36 (2003) R198-R206.

DOI: 10.1088/0022-3727/36/13/203

Google Scholar

[8] A.K. Gupta, M. Gupta, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles, Biomaterials, 26 (2005) 1565-1573.

DOI: 10.1016/j.biomaterials.2004.05.022

Google Scholar

[9] R. Weissleder, A. Bogdanov, E.A. Neuwelt, M. Papisov, Long-circulating iron oxides for MR imaging, Adv. Drug Delivery Rev., 16 (1995) 321-334.

DOI: 10.1016/0169-409x(95)00033-4

Google Scholar

[10] S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications, Prog. Solid State Chem., 34 (2006) 237-247.

DOI: 10.1016/j.progsolidstchem.2005.11.010

Google Scholar

[11] G. Reiss, A. Hütten, Magnetic nanoparticles: Applications beyond data storage, Nat. Mater., 4 (2005) 725-726.

Google Scholar

[12] O. Hellwig, A. Berger, T. Thomson, E. Dobisz, Z.Z. Bandic, H. Yang, D.S. Kercher, E.E. Fullerton, Separating dipolar broadening from the intrinsic switching field distribution in perpendicular patterned media, Appl. Phys. Lett., 90 (2007) 162516.

DOI: 10.1063/1.2730744

Google Scholar

[13] S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science, 287 (2000) 1989-(1992).

DOI: 10.1126/science.287.5460.1989

Google Scholar

[14] C. Desvaux, C. Amiens, P. Fejes, P. Renaud, M. Respaud, P. Lecante, E. Snoeck, B. Chaudret, Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles, Nat. Mater., 4 (2005) 750-753.

DOI: 10.1038/nmat1480

Google Scholar

[15] S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications, J. Mater. Chem., (2011) in press.

DOI: 10.1039/c1jm11845e

Google Scholar

[16] J. -r. Choi, S.J. Oh, H. Ju, J. Cheon, Massive Fabrication of Free-Standing One-Dimensional Co/Pt Nanostructures and Modulation of Ferromagnetism via a Programmable Barcode Layer Effect, Nano Lett., 5 (2005) 2179-2183.

DOI: 10.1021/nl051190k

Google Scholar

[17] B. Devouard, M. Posfai, X. Hua, D.A. Bazylinski, R.B. Frankel, P.R. Buseck, Magnetite from magnetotactic bacteria; size distributions and twinning, Am. Mineral., 83 (1998) 1387-1398.

DOI: 10.2138/am-1998-11-1228

Google Scholar

[18] A. -H. Lu, E.L. Salabas, F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed., 46 (2007) 1222-1244.

DOI: 10.1002/anie.200602866

Google Scholar

[19] J. Park, K. An, Y. Hwang, J. -G. Park, H. -J. Noh, J. -Y. Kim, J. -H. Park, N. -M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater., 3 (2004) 891-895.

DOI: 10.1038/nmat1251

Google Scholar

[20] F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C.B. Murray, S.P. O'Brien, Magnetic, Electronic, and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale, J. Am. Chem. Soc., 126 (2004).

DOI: 10.1021/ja046808r

Google Scholar

[21] S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles, J. Am. Chem. Soc., 126 (2004) 273-279.

DOI: 10.1021/ja0380852

Google Scholar

[22] A. Gorby, T.J. Beveridge, R.P. Blakemore, Characterisation of the Bacterial Magnetosome, J. Bacteriol., 170 (1988) 834-841.

DOI: 10.1128/jb.170.2.834-841.1988

Google Scholar

[23] D. Faivre, D. Schüler, Magnetotactic Bacteria and Magnetosomes, Chem. Rev., 108 (2008) 4875-4898.

DOI: 10.1021/cr078258w

Google Scholar

[24] T. Matsunaga, T. Sakaguchi, F. Tadakoro, Magnetite formation by a magnetic bacterium capable of growing aerobically, Appl. Microbiol. Biotechnol., 35 (1991) 651-655.

DOI: 10.1007/bf00169632

Google Scholar

[25] T. Matsunaga, F. Tadokoro, N. Nakamura, Mass culture of magnetic bacteria and their application to flow type immunoassays, IEEE Trans. Magn., 26 (1990) 1557-1559.

DOI: 10.1109/20.104444

Google Scholar

[26] T. Sakaguchi, J.G. Burgess, T. Matsunaga, Magnetite formation by a sulphate-reducing bacterium, Nature, 365 (1993) 47-49.

DOI: 10.1038/365047a0

Google Scholar

[27] D.A. Bazylinski, R.B. Frankel, Magnetosome formation in prokaryotes, Nat. Rev. Microbiol., 2 (2004) 217-230.

DOI: 10.1038/nrmicro842

Google Scholar

[28] A. Arakaki, H. Nakazawa, M. Nemoto, T. Mori, T. Matsunaga, Formation of magnetite by bacteria and its application, J. R. Soc. Interface., 5 (2008) 977-999.

DOI: 10.1098/rsif.2008.0170

Google Scholar

[29] A. Arakaki, J. Webb, T. Matsunaga, A Novel Protein Tightly Bound to Bacterial Magnetic Particles in Magnetospirillum magneticum Strain AMB-1, J. Biol. Chem., 278 (2003) 8745-8750.

DOI: 10.1074/jbc.m211729200

Google Scholar

[30] A. Arakaki, F. Masuda, Y. Amemiya, T. Tanaka, T. Matsunaga, Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria, J. Colloid Interface Sci., 343 (2010) 65-70.

DOI: 10.1016/j.jcis.2009.11.043

Google Scholar

[31] M. Tanaka, E. Mazuyama, A. Arakaki, T. Matsunaga, Mms6 Protein Regulates Crystal Morphology during Nano-sized Magnetite Biomineralization in Vivo, J. Biol. Chem., 286 (2011) 6386-6392.

DOI: 10.1074/jbc.m110.183434

Google Scholar

[32] J.M. Galloway, A. Arakaki, F. Masuda, T. Tanaka, T. Matsunaga, S.S. Staniland, Magnetic bacterial protein Mms6 controls morphology, crystallinity and magnetism of cobalt-doped magnetite nanoparticles in vitro, J. Mater. Chem., 21 (2011).

DOI: 10.1039/c1jm12003d

Google Scholar

[33] Y. Amemiya, A. Arakaki, S.S. Staniland, T. Tanaka, T. Matsunaga, Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6, Biomaterials, 28 (2007).

DOI: 10.1016/j.biomaterials.2007.07.051

Google Scholar

[34] J. Kim, Y. Rheem, B. Yoo, Y. Chong, K.N. Bozhilov, D. Kim, M.J. Sadowsky, H. -G. Hur, N.V. Myung, Peptide-mediated shape- and size-tunable synthesis of gold nanostructures, Acta Biomater., 6 (2010) 2681-2689.

DOI: 10.1016/j.actbio.2010.01.019

Google Scholar

[35] B. Wang, K. Chen, S. Jiang, F. Reincke, W. Tong, D. Wang, C. Gao, Chitosan-Mediated Synthesis of Gold Nanoparticles on Patterned Poly(dimethylsiloxane) Surfaces, Biomacromolecules, 7 (2006) 1203-1209.

DOI: 10.1021/bm060030f

Google Scholar

[36] R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, Biomimetic synthesis and patterning of silver nanoparticles, Nat. Mater., 1 (2002) 169-172.

DOI: 10.1038/nmat758

Google Scholar

[37] L.L. Brott, R.R. Naik, D.J. Pikas, S.M. Kirkpatrick, D.W. Tomlin, P.W. Whitlock, S.J. Clarson, M.O. Stone, Ultrafast holographic nanopatterning of biocatalytically formed silica, Nature, 413 (2001) 291-293.

DOI: 10.1038/35095031

Google Scholar

[38] C. -Y. Chiu, Y. Li, Y. Huang, Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide, Nanoscale, 2 (2010) 927-930.

DOI: 10.1039/c0nr00194e

Google Scholar

[39] D.B. Pacardo, M. Sethi, S.E. Jones, R.R. Naik, M.R. Knecht, Biomimetic Synthesis of Pd Nanocatalysts for the Stille Coupling Reaction, ACS Nano, 3 (2009) 1288-1296.

DOI: 10.1021/nn9002709

Google Scholar

[40] B.D. Reiss, C. Mao, D.J. Solis, K.S. Ryan, T. Thomson, A.M. Belcher, Biological Routes to Metal Alloy Ferromagnetic Nanostructures, Nano Lett., 4 (2004) 1127-1132.

DOI: 10.1021/nl049825n

Google Scholar

[41] R.R. Naik, S.E. Jones, C.J. Murray, J.C. McAuliffe, R.A. Vaia, M.O. Stone, Peptide Templates for Nanoparticle Synthesis Derived from Polymerase Chain Reaction-Driven Phage Display, Adv. Funct. Mater., 14 (2004) 25-30.

DOI: 10.1002/adfm.200304501

Google Scholar

[42] E. Estephan, M. -b. Saab, C. Larroque, M. Martin, F. Olsson, S. Lourdudoss, C. Gergely, Peptides for functionalization of InP semiconductors, J. Colloid Interface Sci., 337 (2009) 358-363.

DOI: 10.1016/j.jcis.2009.05.040

Google Scholar

[43] S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher, Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly, Nature, 405 (2000) 665-668.

DOI: 10.1038/35015043

Google Scholar

[44] A. Arakaki, T. Matsunaga, F. Masuda, Iron oxide crystal formation on a substrate modified with Mms6 protein from magnetotactic bacteria, Mater. Res. Soc., 1187 (2009) KK03-08.

DOI: 10.1557/proc-1187-kk03-08

Google Scholar

[45] T.T. Le, C.P. Wilde, N. Grossman, A.E.G. Cass, A simple method for controlled immobilization of proteins on modified SAMs, Phys. Chem. Chem. Phys., 13 (2011) 5271-5278.

DOI: 10.1039/c0cp02531c

Google Scholar

[46] R.I.W. Osmond, W.C. Kett, S.E. Skett, D.R. Coombe, Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization, Anal. Biochem., 310 (2002) 199-207.

DOI: 10.1016/s0003-2697(02)00396-2

Google Scholar

[47] J.M. Galloway, J.P. Bramble, A.E. Rawlings, G. Burnell, S.D. Evans, S.S. Staniland, Biotemplated Magnetic Nanoparticle Arrays, Small, in press (2011).

DOI: 10.1002/smll.201101627

Google Scholar

[48] F.W. Sturdier, Protein production by auto-induction in high density shaking cultures, Protein Expression Purif., 41 (2005) 207-234.

DOI: 10.1016/j.pep.2005.01.016

Google Scholar

[49] J. Porath, J. Carlsson, I. Olsson, G. Belfrage, Metal chelate affinity chromatography, a new approach to protein fractionation, Nature, 258 (1975) 598-599.

DOI: 10.1038/258598a0

Google Scholar

[50] R.B. Kapust, D.S. Waugh, Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused, Prot. Sci., 8 (1999) 1668-1674.

DOI: 10.1110/ps.8.8.1668

Google Scholar

[51] R.B. Kapust, J. Tözsér, J.D. Fox, D.E. Anderson, S. Cherry, T.D. Copeland, D.S. Waugh, Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency, Prot. Eng., 14 (2001) 993-1000.

DOI: 10.1093/protein/14.12.993

Google Scholar

[52] A. Kumar, H.A. Biebuyck, G.M. Whitesides, Patterning Self-Assembled Monolayers: Applications in Materials Science, Langmuir, 10 (1994) 1498-1511.

DOI: 10.1021/la00017a030

Google Scholar

[53] K.L. Prime, G.M. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers, J. Am. Chem. Soc., 115 (1993) 10714-10721.

DOI: 10.1021/ja00076a032

Google Scholar

[54] J. Lahiri, L. Isaacs, J. Tien, G.M. Whitesides, A Strategy for the Generation of Surfaces Presenting Ligands for Studies of Binding Based on an Active Ester as a Common Reactive Intermediate: A Surface Plasmon Resonance Study, Anal. Chem., 71 (1999).

DOI: 10.1021/ac980959t

Google Scholar

[55] T. Sugimoto, E. Matijevic, Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels, J. Colloid Interface Sci., 74 (1980) 227-243.

DOI: 10.1016/0021-9797(80)90187-3

Google Scholar

[56] A.E. Regazzoni, G.A. Urrutia, M.A. Blesa, A.J.G. Maroto, Some observations on the composition and morphology of synthetic magnetites obtained by different routes, J. Inorg. Nucl. Chem., 43 (1981) 1489-1493.

DOI: 10.1016/0022-1902(81)80322-3

Google Scholar

[57] I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78 (2007) 013705.

DOI: 10.1063/1.2432410

Google Scholar

[58] H. Schägger, Tricine-SDS-PAGE, Nat. Protocols, 1 (2006) 16-22.

DOI: 10.1038/nprot.2006.4

Google Scholar

[59] J. Lahiri, E. Ostuni, G.M. Whitesides, Patterning Ligands on Reactive SAMs by Microcontact Printing, Langmuir, 15 (1999) 2055-(2060).

DOI: 10.1021/la9811970

Google Scholar

[60] R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc., 105 (1983) 4481-4483.

DOI: 10.1021/ja00351a063

Google Scholar

[61] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., 96 (1996) 1533-1554.

DOI: 10.1021/cr9502357

Google Scholar

[62] Y. Xia, G.M. Whitesides, Soft Lithography, Angew. Chem. Int. Ed., 37 (1998) 550-575.

Google Scholar

[63] F. Rusmini, Z. Zhong, J. Feijen, Protein Immobilization Strategies for Protein Biochips, Biomacromolecules, 8 (2007) 1775-1789.

DOI: 10.1021/bm061197b

Google Scholar

[64] R.M. Cornell, U. Schwertman, The iron oxides : structure, properties, reactions, occurences and uses, 2nd ed. ed, Wiley-VCH, Weinheim :, (2003).

Google Scholar

[65] P.S. Sidhu, R.J. Gilkes, A.M. Posner, The synthesis and some properties of Co, Ni, Zn, Cu, Mn and Cd substituted magnetites, J. Inorg. Nucl. Chem., 40 (1978) 429-435.

DOI: 10.1016/0022-1902(78)80418-7

Google Scholar

[66] D. Kim, N. Lee, M. Park, B.H. Kim, K. An, T. Hyeon, Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes, J. Am. Chem. Soc., 131 (2009) 454-455.

DOI: 10.1021/ja8086906

Google Scholar