Sol-Gel Synthesized Copper-Substituted Cobalt Ferrite Nanoparticles for Biomedical Applications

Article Preview

Abstract:

Copper-substituted cobalt ferrite nanoparticles were prepared via a sol-gel route using citric acid as a chelating agent. The influence of copper concentration on the microstructure, crystal structure and antibacterial property of copper-substituted cobalt ferrite nanoparticles against E. coli and S. aureus has been systematically investigated. The results indicate that the substitution of copper influences strongly the microstructure, crystal structure, particle diameter and antibacterial property of cobalt ferrite nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-106

Citation:

Online since:

May 2013

Export:

Price:

[1] X. Meng, H. Li, J. Chen, L. Mei, K. Wang, and X. Li, Mössbauer study of cobalt ferrite nanocrystals substituted with rare-earth Y3+ ions, J. Magn. Magn. Mater. 321 (2009) 1155-1158.

DOI: 10.1016/j.jmmm.2008.10.041

Google Scholar

[2] M. Sugimoto, The past, present, and future of ferrites, J. Am. Ceram. Soc. 82 (1999) 269-279.

Google Scholar

[3] M. P. Pileni, Magnetic fluids: Fabrication, magnetic properties, and organization of nanocrystals, Adv. Funct. Mater. 11 (2001) 323-336.

DOI: 10.1002/1616-3028(200110)11:5<323::aid-adfm323>3.0.co;2-j

Google Scholar

[4] C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, Reverse micelle mynthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites, J. Phys. Chem. B. 104 (2000) 1141-1145.

DOI: 10.1021/jp993552g

Google Scholar

[5] L. Zhen, K. He, C. Y. Xu, and W. Z. Shao, Synthesis and characterization of single-crystalline MnFe2O4 nanorods via a surfactant-free hydrothermal route, J. Magn. Magn. Mater. 320 (2008) 2672-2675.

DOI: 10.1016/j.jmmm.2008.05.034

Google Scholar

[6] E. Katz, A.N. Shipway, I. Willner, Nanoparticles, Wiley-VCH Verlag GmbH & Co. KGaA, (2005)

Google Scholar

[7] D.-H. Kim, D. E. Nikles, D. T. Johnson, and C. S. Brazel, Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia, J. Magn. Magn. Mater. 320 (2008) 2390-2396.

DOI: 10.1016/j.jmmm.2008.05.023

Google Scholar

[8] D. Jamon, F. Donatini, A. Siblini, F. Royer, R. Perzynski, V. Cabuil, and S. Neveu, Experimental investigation on the magneto-optic effects of ferrofluids via dynamic measurements, J. Magn. Magn. Mater. 321 (2009) 1148-1154.

DOI: 10.1016/j.jmmm.2008.10.038

Google Scholar

[9] K. Byrappa, S. Ohara, and T. Adschiri, Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications, Adv. Drug Deliv. Rev. 60 (2008) 299-327.

DOI: 10.1016/j.addr.2007.09.001

Google Scholar

[10] N. Sanpo, J. Wang, and C. C. Berndt, Influence of chelating agents on the microstructure and antibacterial property of cobalt ferrite nanopowders, J. Aust. Ceram. Soc. 49 (2013) 84-91.

Google Scholar

[11] G. Vaidyanathan and S. Sendhilnathan, Characterization of Co1−xZnxFe2O4 nanoparticles synthesized by co-precipitation method, Phys. B Condens. Matter. 403 (2008) 2157-2167.

DOI: 10.1016/j.physb.2007.08.219

Google Scholar

[12] N. Sanpo, C. C. Berndt, and J. Wang, Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods, J. Appl. Phys. 112 (2012) 084333-6.

DOI: 10.1063/1.4761987

Google Scholar

[13] N. Sanpo, J. Wang, and C. C. Berndt, Effect of zinc substitution on microstructure and antibacterial properties of cobalt ferrite nanopowders synthesized by sol-gel methods, Adv. Mat. Res. 535-537 (2012) 436-439.

DOI: 10.4028/www.scientific.net/amr.535-537.436

Google Scholar

[14] G. De, G. Mattei, P. Mazzoldi, C. Sada, G. Battaglin, and A. Quaranta, Au−Cu alloy nanocluster doped SiO2 films by sol−gel processing, Chem. Mater. 12 (2000) 2157-2160.

DOI: 10.1021/cm001053i

Google Scholar

[15] X. Zuo, A. Yang, C. Vittoria, and V. G. Harris, Computational study of copper ferrite (CuFe2O4), J. Appl. Phys. 99 (2006) 08M909-3.

DOI: 10.1063/1.2170048

Google Scholar

[16] Z. Lu, C. M. Li, H. Bao, Y. Qiao, Y. Toh, and X. Yang, Mechanism of antimicrobial activity of CdTe quantum dots, Langmuir. 24 (2008) 5445-5452.

DOI: 10.1021/la704075r

Google Scholar

[17] T. D. Wikins, L. V. Holdeman, I. J. Abramson, and W. E. Moore, Standardized single-disc method for antibiotic susceptibility testing of anaerobic bacteria, Antimicrob. Agents Chemother. 1 (1972) 451-459.

DOI: 10.1128/aac.1.6.451

Google Scholar

[18] T. Yu, Z. X. Shen, Y. Shi, and J. Ding, Cation migration and magnetic ordering in spinel CoFe2O4 powder: Micro-Raman scattering study, J. Phys.: Condens. Matter. 14 (2002) L613-L618.

DOI: 10.1088/0953-8984/14/37/101

Google Scholar

[19] D. Varshney, K. Verma, and A. Kumar, Substitutional effect on structural and magnetic properties of AxCo1-xFe2O4 (A = Zn, Mg and x = 0.0, 0.5) ferrites, J. Mol. Struct. 1006 (2011) 447-452.

DOI: 10.1016/j.molstruc.2011.09.047

Google Scholar

[20] S. Ayyappan, G. Panneerselvam, M. P. Antony, N. V. Rama Rao, N. Thirumurugan, A. Bharathi, and J. Philip, Effect of initial particle size on phase transformation temperature of surfactant capped Fe3O4 nanoparticles, J. Appl. Phys. 109 (2011) 084303-8.

DOI: 10.1063/1.3564964

Google Scholar

[21] Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, and W. Song, Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles, J. Magn. Magn. Mater. 321 (2009) 1251-1255.

DOI: 10.1016/j.jmmm.2008.11.004

Google Scholar

[22] C.-H. Hu and M.-S. Xia, Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88, Appl. Clay Sci. 31 (2006) 180-184.

DOI: 10.1016/j.clay.2005.10.010

Google Scholar

[23] J. Robertson, Elements of x-ray diffraction by B. D. Cullity, Acta Crystallogr. Sect. A. 35 (1979) 350.

Google Scholar

[24] M. Raffi, S. Mehrwan, T. M. Bhatti, J. I. Akhter, A. Hameed, W. Yawar, and M. M. Ul Hasan, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli, Ann. Microbiol. 60 (2010) 75-80.

DOI: 10.1007/s13213-010-0015-6

Google Scholar

[25] P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde, Metal oxide nanoparticles as bactericidal agents, Langmuir. 18 (2002) 6679-6686.

DOI: 10.1021/la0202374

Google Scholar