Preparation and Characterization of Nanoparticle Reinforced Polyactides Composite

Article Preview

Abstract:

Polylactides (PLA) based composite films modified with nanoclay content ranges from 0-30 wt% were fabricated using solvent casting method and the mechanical properties, water vapor permeability, oxygen barrier, thermal stability and optical properties were studied. The study showed that the addition of up to 15 wt% of clay has caused a significant improvement of tensile strength of the PLA/nanoclay composite film. However, the further increasing of nanoclay content of >15 wt% of nanoclay has caused a significant reduction in tensile, elongation at break and optical properties of PLA matrix. Both the oxygen and water permeability of the PLA/nanoclay composite film decrease with the increasing of nanoclay contents. Greater water barrier properties would be achieved if the high nanoclay contents of 10-30 wt% were dispersed homogenous within the PLA matrix. The addition of nanoclay greater than 10 wt% affected the appearance of the film (i.e. increasing the haze and ΔE). Thermal analysis result has proved that the melting temperature, crystallization temperature and glass transition temperature of the composite film only slightly affected by the addition of nanoclay due to the immobilization polymer chain in the composite film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-15

Citation:

Online since:

July 2013

Export:

Price:

[1] H.Tsuji, Poly(lactide) stereocomplexes: formation, structure, degradation, and applications, Macromol. Biosci. 5 (2005) 569-597.

DOI: 10.1002/mabi.200500062

Google Scholar

[2] R.E. Drumright, P.R. Gruber and D.E. Henton, Polylactic acid technology, Adv. Mater. 12 (2000) 1841- 1846.

DOI: 10.1002/1521-4095(200012)12:23<1841::aid-adma1841>3.0.co;2-e

Google Scholar

[3] D. Garlotta, A literature review of Poly( Lactic Acid), J. Polym. Env. 9 (2001) 63-84.

Google Scholar

[4] J.W. Rhim, S.I. Hong and C.S. Ha, Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films, LWT-Food Sci. Tech. 42 (2009) 612-617.

DOI: 10.1016/j.lwt.2008.02.015

Google Scholar

[5] H.Y. Kim and S.C. Kim, Synthesis and properties of poly(L-lactide)-polyether-poly(L-lactide) triblock copolymers, Macromolecular Res. 19 (2011) 448-452.

DOI: 10.1007/s13233-011-0514-8

Google Scholar

[6] L. Cabedo, J.L. Feijoo, M.P. Villanueva, J.M. Lagaro´n and E. Gime'nez, Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications, Macromol. Symp. 233 (2006) 191-197.

DOI: 10.1002/masy.200690017

Google Scholar

[7] L.S. Liu, V.L. Finkenstadt, C.K. Liu, T. Jin, M.L. Fishman and K.B. Hicks, Preparation of poly(lactic acid) and pectin composite films intended for applications in antimicrobial packaging, J. Appl. Polym. Sci. 106 (2007) 801-810.

DOI: 10.1002/app.26590

Google Scholar

[8] S.S. Ray and M. Okamoto, Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites, Macromol. Rapid. Commun. 24 (2003) 815-840.

DOI: 10.1002/marc.200300008

Google Scholar

[9] M. Biswas and S.S. Ray, Recent progress in synthesis and evaluation of polymer- montmorillonite nanocomposites, Adv. Polym. Sci. 155 (2001) 167-221.

Google Scholar

[10] M. Alexander and P. Dubois, Polymer-layered silicate nanocomposites: preparation and uses of a new class of materials, Mater. Sci. Eng. R. 28 (2000) 1-63.

Google Scholar

[11] E.P. Giannelis, Polymer-layered silicate nanocomposites: synthesis, properties and applications, Appl. Organomet. Chem. 12 (1998) 675-680.

DOI: 10.1002/(sici)1099-0739(199810/11)12:10/11<675::aid-aoc779>3.0.co;2-v

Google Scholar

[12] R. Xu, E. Manias, A.J. Snyder and J. Runt, New biomedical poly(urethane urea)-layered silicate nanocomposites, Macromol. 34 (2001) 337-339.

DOI: 10.1021/ma0013657

Google Scholar

[13] P.B. Messersmith and E.P. Giannelis, Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites, J. Polym. Sci., Part A: Polym. Chem. 33 (1995) 1047-1057.

DOI: 10.1002/pola.1995.080330707

Google Scholar

[14] S. S. Ray, K.Yamada, M. Okamoto and K.Ueda, Polylactide- layered silicate nanocomposite: A novel biodegradable material, Nano Lett. 2 (2002) 1093-1096.

DOI: 10.1021/nl0202152

Google Scholar

[15] S.R. Suprakas, Y. Kazunobu, O. Maasami and U. Kazue, Biodegradable polylactide /montmorillonite nanocomposites, J. Nanosci. Nanotechno. 3 (2003) 503-510.

Google Scholar

[16] Y.C. Ching and I.I. Yaacob, Influence of nano-SiO2/polyamide composites coating on thermic effect and optical properties of polyethylene film, Int. J. Mod. Phys. B, 23 (2009) 1395-1400.

DOI: 10.1142/s0217979209060993

Google Scholar

[17] P.D. Sia, V. Dallacasa and F. Dallacasa, A powerful method to describe transport properties of nano and bio materials, J. Nano Res. 11 (2010) 45-56.

DOI: 10.4028/www.scientific.net/jnanor.11.45

Google Scholar

[18] N. Ogata, G. Jimenez, H. Kawai and T. Ogihara, Structure and thermal/mechanical properties of poly (l-lactide)-clay blend, J.Polym. Sci. Part B: Polym. Phy. 35 (1997) 389-396.

DOI: 10.1002/(sici)1099-0488(19970130)35:2<389::aid-polb14>3.0.co;2-e

Google Scholar

[19] J.H. Chang, A. Yu, D. Cho and E.P. Giannelis, Poly(lactic acid) nanocomposites: comparsion of their with montmorillonite and synthetic mica (II), Polym. 44 (2003) 3715-3720.

DOI: 10.1016/s0032-3861(03)00276-3

Google Scholar

[20] ASTM. Standard test methods for tensile properties of thin plastic sheeting, in: Annual Book of ASTM Standards, vol. 8.01. American Society for Testing and Materials, West Conshohochen, PA, 1995a, p.182–190.

Google Scholar

[21] ASTM. Standard test methods for water vapor transmission of materials, in: Annual Book of ASTM Standards, vol. 4.06. American Society for Testing and Materials,West Conshohochen, PA, 1995b, p.697–704.

Google Scholar

[22] A. Gennadios, C.L. Weller and C.H. Gooding, Measurements errors in water vapor permeability of highly permeable, hydrophilic edible films, J. Food Eng. 21 (1994) 395-409.

DOI: 10.1016/0260-8774(94)90062-0

Google Scholar

[23] S.K. Srivastava and I.P. Singh, Mechanical properties of glass fibre-epoxy based polymer nanocomposities, J. Nano Res, 15 (2011) 41-49.

DOI: 10.4028/www.scientific.net/jnanor.15.41

Google Scholar

[24] D.R. Mishra1, P. Mohanty and P.L. Nayak, Phisico-chemical properties of environmental friendly starch-mmt nanocomposites for film making, Int. J. Plant, Animal and Env. Sci. (2011) 134-144.

Google Scholar

[25] N.S. Pierre, B.D. Favis, B.A. Ramsay, J. A. Ramsay and H. Verhoogt, Processing and characterization of thermoplastic starch/polyethylene blends, Polym. 38 (1997) 647-655.

DOI: 10.1016/s0032-3861(97)81176-7

Google Scholar

[26] M. Mondragon, J.E. Mancilla and F.J. Rodriguez-Gonzalez, Nanocomposites from plasticized high-amylopectin, normal and high–amylose maize starches, Polym. Eng. Sci. 48 (2008) 1261-1267.

DOI: 10.1002/pen.21084

Google Scholar

[27] R. Sothornvit, J-W. Rhim and S-I. Hong, Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/ clay composite films, J. Food. Eng. 91 (2009) 468-473.

DOI: 10.1016/j.jfoodeng.2008.09.026

Google Scholar

[28] Y.C. Ching and I. I. Yaacob, Influence of nanosilica/polyurethane composite coating on IR effectiveness and visible light transmission properties of polyethylene. Adv. Mater. Res. 97 (2010) 1669-1672.

DOI: 10.4028/www.scientific.net/amr.97-101.1669

Google Scholar

[29] Y.C. Ching and I. I. Yaacob, Weathering effect on PE coated with thin layer of PU/nanosilica composite, Adv. Mater. Res. 181 (2011) 697-701.

DOI: 10.4028/www.scientific.net/amr.181-182.697

Google Scholar

[30] M.P. Pavlov, J.F. Mano, N.M. Naves and R.L. Reis, Fibers and 3D mesh scaffolds from biodegradable starch-based blends: production and characterization, Macromol. Biosci. 4 (2004) 776 -784.

DOI: 10.1002/mabi.200400002

Google Scholar

[31] Y.Qiao and J.M. Pochan, Mechanics of polymer-clay nanocomposites, Macromol. 40 (2007) 290-296.

Google Scholar

[32] M-A. Paul, M. Alexandre, P. Degee, C. Henrist, A. Rulmont and P. Dubois, New nanocomposites materials based on plasticized poly (l-lactide) and organo-modified montmorillonites: thermal and morphological study, Polym. 44 (2003) 443-450.

DOI: 10.1016/s0032-3861(02)00778-4

Google Scholar

[33] A. R. Luzuriaga, H. Grande, J. A. Pomposo, A theoretical investigation of polymer-nanoparticles as miscibility improvers in all polymer nanocomposites, J. Nano Res. 2 (2008) 105-114.

DOI: 10.4028/www.scientific.net/jnanor.2.105

Google Scholar

[34] Y.C. Ching and I. I. Yaacob, Effect of Polyurethane/nanosilica composites coating on thermo-mechanical properties of polyethylene film, Mater. Technol. 27(2012) 113-115.

DOI: 10.1179/175355511x13240279340246

Google Scholar

[35] Y.C. Ching, K.Y. Goh, L. Chuah, N. Kalyani, Effect of nanosilica and titania on thermal stability of polypropylene/oil palm empty fruit fibre composite, J. Biobased Mater. Bioenergy, 6 (2012) 1-6.

DOI: 10.1166/jbmb.2013.1281

Google Scholar