Methane Formation in Fischer-Tropsch Synthesis: Role of Nanosized Catalyst Particles

Article Preview

Abstract:

Concepts of the surface excess energy in the present work have been applied to explain the methane formation in Fischer-Tropsch synthesis by iron catalysts. A series of iron oxide particles doped by adding copper and lanthanum were prepared as a catalyst via precipitation by microemulsion method. Size dependent kinetic expressions for methane formation were derived and evaluated using experimental results. Experimental results show that the methane formation is increased by decreasing the catalyst particle size. The value of surface tension energy (σ) for iron catalyst is calculated in range of 0.047-0.015 J/m2 in methane formation mechanism. This value is lower than iron metal and is referred to the presence of iron carbide and gas phase in this catalytic reaction. With a series of complicated mechanisms, methane is produced on the surface of catalyst and in the gas phase as well, this would be elaborated by following paragraphs, thus we can conclude that surface tension of catalyst has less effect on these reactions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-54

Citation:

Online since:

October 2015

Export:

Price:

[1] G.P. van der Laan, A.A.C.M. Beenackers, Intrinsic kinetics of the gas–solid Fischer–Tropsch and water gas shift reactions over a precipitated iron catalyst, Applied Catalysis A: General, 193 (2000) 39-53.

DOI: 10.1016/s0926-860x(99)00412-3

Google Scholar

[2] H. Schulz, Short history and present trends of Fischer–Tropsch synthesis, Applied Catalysis A: General, 186 (1999) 3-12.

DOI: 10.1016/s0926-860x(99)00160-x

Google Scholar

[3] A.P. Steynberg, Chapter 1 - Introduction to Fischer-Tropsch Technology, in: S. André, D. Mark (Eds. ) Studies in Surface Science and Catalysis, Elsevier, 2004, pp.1-63.

DOI: 10.1016/s0167-2991(04)80458-0

Google Scholar

[4] A. Nakhaei Pour, M. Zare, S.M. Kamali Shahri, Y. Zamani, M.R. Alaei, Catalytic behaviors of bifunctional Fe-HZSM-5 catalyst in Fischer–Tropsch synthesis, Journal of Natural Gas Science and Engineering, 1 (2009) 183-189.

DOI: 10.1016/j.jngse.2009.11.003

Google Scholar

[5] A. Nakhaei Pour, Y. Zamani, A. Tavasoli, S.M. Kamali Shahri, S.A. Taheri, Study on products distribution of iron and iron–zeolite catalysts in Fischer–Tropsch synthesis, Fuel, 87 (2008) 2004-(2012).

DOI: 10.1016/j.fuel.2007.10.014

Google Scholar

[6] A. Nakhaei Pour, S. Taghipoor, M. Shekarriz, S.M.K. Shahri, Y. Zamani, FischerTropsch Synthesis with Fe/Cu/La/SiO2 Nano-Structured Catalyst, Journal of Nanoscience and Nanotechnology, 9 (2009) 4425-4429.

DOI: 10.1166/jnn.2009.m71

Google Scholar

[7] A. Nakhaei Pour, S.M.K. Shahri, Y. Zamani, A. Zamanian, Promoter effect on the CO2-H2O formation during Fischer-Tropsch synthesis on iron-based catalysts, Journal of Natural Gas Chemistry, 19 (2010) 193-197.

DOI: 10.1016/s1003-9953(09)60040-2

Google Scholar

[8] L. Tian, C. -F. Huo, D. -B. Cao, Y. Yang, J. Xu, B. -S. Wu, H. -W. Xiang, Y. -Y. Xu, Y. -W. Li, Effects of reaction conditions on iron-catalyzed Fischer–Tropsch synthesis: A kinetic Monte Carlo study, Journal of Molecular Structure: THEOCHEM, 941 (2010).

DOI: 10.1016/j.theochem.2009.10.032

Google Scholar

[9] B. -T. Teng, J. Chang, C. -H. Zhang, D. -B. Cao, J. Yang, Y. Liu, X. -H. Guo, H. -W. Xiang, Y. -W. Li, A comprehensive kinetics model of Fischer–Tropsch synthesis over an industrial Fe–Mn catalyst, Applied Catalysis A: General, 301 (2006) 39-50.

DOI: 10.1016/j.apcata.2005.11.014

Google Scholar

[10] J. Patzlaff, Y. Liu, C. Graffmann, J. Gaube, Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis, Applied Catalysis A: General, 186 (1999) 109-119.

DOI: 10.1016/s0926-860x(99)00167-2

Google Scholar

[11] J. -Y. Park, Y. -J. Lee, P.K. Khanna, K. -W. Jun, J.W. Bae, Y.H. Kim, Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: Effect of particle size of iron oxide, Journal of Molecular Catalysis A: Chemical, 323 (2010) 84-90.

DOI: 10.1016/j.molcata.2010.03.025

Google Scholar

[12] A. Nakhaei Pour, M.R. Housaindokht, J. Zarkesh, M. Irani, E.G. Babakhani, Kinetics study of CO hydrogenation on a precipitated iron catalyst, Journal of Industrial and Engineering Chemistry, 18 (2012) 597-603.

DOI: 10.1016/j.jiec.2011.11.080

Google Scholar

[13] A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, Effect of nano-particle size on product distribution and kinetic parameters of Fe/Cu/La catalyst in Fischer-Tropsch synthesis, Journal of Natural Gas Chemistry, 19 (2010) 107-116.

DOI: 10.1016/s1003-9953(09)60041-4

Google Scholar

[14] R. Zhang, J. Chang, Y. Xu, L. Cao, Y. Li, J. Zhou, Kinetic Model of Product Distribution over Fe Catalyst for Fischer−Tropsch Synthesis†, Energy & Fuels, 23 (2009) 4740-4747.

DOI: 10.1021/ef801079u

Google Scholar

[15] A. Tavasoli, A. Nakhaei Pour, M.G. Ahangari, Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer-Tropsch synthesis catalyst, Journal of Natural Gas Chemistry, 19 (2010) 653-659.

DOI: 10.1016/s1003-9953(09)60133-x

Google Scholar

[16] R.J.M. S. Novak, and H. Suhl Models of hydrocarbon product distributions in Fischer–Tropsch synthesis., Journal of Chemical Physics, 74 (1981) 9.

DOI: 10.1063/1.441051

Google Scholar

[17] I. Puskas, R.S. Hurlbut, Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products, Catalysis Today, 84 (2003) 99-109.

DOI: 10.1016/s0920-5861(03)00305-5

Google Scholar

[18] A. Nakhaei Pour, M. Zare, Y. Zamani, Studies on product distribution of alkali promoted iron catalyst in Fischer-Tropsch synthesis, Journal of Natural Gas Chemistry, 19 (2010) 31-34.

DOI: 10.1016/s1003-9953(09)60025-6

Google Scholar

[19] A. Nakhaei Pour, H. Khodabandeh, M. Izadyar, M.R. Housaindokht, Mechanistic double ASF product distribution study of Fischer–Tropsch synthesis on precipitated iron catalyst, Journal of Natural Gas Science and Engineering, 15 (2013) 53-58.

DOI: 10.1016/j.jngse.2013.09.005

Google Scholar

[20] A. Nakhaei Pour, M.R. Housaindokht, Studies on product distribution of nanostructured iron catalyst in Fischer–Tropsch synthesis: Effect of catalyst particle size, Journal of Industrial and Engineering Chemistry.

DOI: 10.1016/j.jiec.2013.05.019

Google Scholar

[21] A. Nakhaei Pour, M.R. Housaindokht, Studies on product distribution of nanostructured iron catalyst in Fischer–Tropsch synthesis: Effect of catalyst particle size, Journal of Industrial and Engineering Chemistry, 20 (2014) 591-596.

DOI: 10.1016/j.jiec.2013.05.019

Google Scholar

[22] G. Hutchings, R.L. Espinozab, A classification of fischer-tropsch synthesis product distributions, The Canadian Journal of Chemical Engineering, 63 (1985) 695-697.

DOI: 10.1002/cjce.5450630427

Google Scholar

[23] R.A. Friedel, R.B. Anderson, Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst1, Journal of the American Chemical Society, 72 (1950) 1212-1215.

DOI: 10.1021/ja01159a039

Google Scholar

[24] N.O. Egiebor, W.C. Cooper, B.W. Wojciechowski, Carbon number distribution of fischer — Tropsch CO-hydrogenation products from precipitated iron catalysts, The Canadian Journal of Chemical Engineering, 63 (1985) 826-834.

DOI: 10.1002/cjce.5450630519

Google Scholar

[25] T.J. Donnelly, I.C. Yates, C.N. Satterfield, Analysis and prediction of product distributions of the Fischer-Tropsch synthesis, Energy & Fuels, 2 (1988) 734-739.

DOI: 10.1021/ef00012a003

Google Scholar

[26] M.A. Vannice, The Catalytic Synthesis of Hydrocarbons from Carbon Monoxide and Hydrogen, Catalysis Reviews, 14 (1976) 153-191.

DOI: 10.1080/03602457608073410

Google Scholar

[27] G.P. Van Der Laan, A.A.C.M. Beenackers, Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review, Catalysis Reviews, 41 (1999) 255-318.

DOI: 10.1081/cr-100101170

Google Scholar

[28] P.C. Thune, C.J. Weststrate, P. Moodley, A.M. Saib, J. van de Loosdrecht, J.T. Miller, J.W. Niemantsverdriet, Studying Fischer-Tropsch catalysts using transmission electron microscopy and model systems of nanoparticles on planar supports, Catalysis Science & Technology, 1 (2011).

DOI: 10.1039/c1cy00056j

Google Scholar

[29] A. Nakhaei Pour, S.M.K. Shahri, Y. Zamani, M. Irani, S. Tehrani, Deactivation studies of bifunctional Fe-HZSM5 catalyst in Fischer-Tropsch process, Journal of Natural Gas Chemistry, 17 (2008) 242-248.

DOI: 10.1016/s1003-9953(08)60058-4

Google Scholar

[30] A. Nakhaei Pour, S.M.K. Shahri, H.R. Bozorgzadeh, Y. Zamani, A. Tavasoli, M.A. Marvast, Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis, Applied Catalysis A: General, 348 (2008).

DOI: 10.1016/j.apcata.2008.06.045

Google Scholar

[31] A. Nakhaei Pour, M.R. Housaindokht, J. Zarkesh, S.F. Tayyari, Water-gas-shift kinetic over nano-structured iron catalyst in Fischer–Tropsch synthesis, Journal of Natural Gas Science and Engineering, 2 (2010) 79-85.

DOI: 10.1016/j.jngse.2010.04.001

Google Scholar

[32] A. Nakhaei Pour, M.R. Housaindokht, J. Zarkesh, S.F. Tayyari, Studies of carbonaceous species in alkali promoted iron catalysts during Fischer–Tropsch synthesis, Journal of Industrial and Engineering Chemistry, 16 (2010) 1025-1032.

DOI: 10.1016/j.jiec.2010.09.003

Google Scholar

[33] A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, S.M.K. Shahri, Water-gas-shift kinetics over a Fe/Cu/La/Si catalyst in Fischer–Tropsch synthesis, Chemical Engineering Research and Design, 89 (2011) 262-269.

DOI: 10.1016/j.cherd.2010.07.008

Google Scholar

[34] A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, M.R. Alaei, Kinetic studies of the Fischer–Tropsch synthesis over La, Mg and Ca promoted nano-structured iron catalyst, Journal of Natural Gas Science and Engineering, 2 (2010) 61-68.

DOI: 10.1016/j.jngse.2010.02.004

Google Scholar

[35] A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, M.R. Alaei, Deactivation studies of Fischer–Tropsch synthesis on nano-structured iron catalyst, Journal of Molecular Catalysis A: Chemical, 330 (2010) 112-120.

DOI: 10.1016/j.molcata.2010.07.010

Google Scholar

[36] A. Nakhaei Pour, M.R. Housaindokht, M. Irani, S.M. Kamali Shahri, Size-dependent studies of Fischer–Tropsch synthesis on iron based catalyst: New kinetic model, Fuel, 116 (2014) 787-793.

DOI: 10.1016/j.fuel.2013.08.080

Google Scholar

[37] A. Nakhaei Pour, M.R. Housaindokht, Study of activity, products selectivity and physico-chemical properties of bifunctional Fe/HZSM-5 Fischer–Tropsch catalyst: Effect of catalyst shaping, Journal of Natural Gas Science and Engineering, 14 (2013).

DOI: 10.1016/j.jngse.2013.04.004

Google Scholar

[38] A. Nakhaei Pour, M.R. Housaindokht, Fischer-Tropsch synthesis on iron catalyst promoted with HZSM-5 zeolite: Regeneration studies of catalyst, Journal of Natural Gas Science and Engineering, 14 (2013) 49-54.

DOI: 10.1016/j.jngse.2013.05.004

Google Scholar

[39] A. Nakhaei Pour, M.R. Housaindokht, The olefin to paraffin ratio as a function of catalyst particle size in Fischer–Tropsch synthesis by iron catalyst, Journal of Natural Gas Science and Engineering, 14 (2013) 204-210.

DOI: 10.1016/j.jngse.2013.06.007

Google Scholar

[40] A. Sarkar, D. Seth, A. Dozier, J. Neathery, H. Hamdeh, B. Davis, Fischer–Tropsch Synthesis: Morphology, Phase Transformation and Particle Size Growth of Nano-scale Particles, Catal Lett, 117 (2007) 1-17.

DOI: 10.1007/s10562-007-9194-6

Google Scholar

[41] T. Herranz, S. Rojas, F.J. Pérez-Alonso, M. Ojeda, P. Terreros, J.L.G. Fierro, Carbon oxide hydrogenation over silica-supported iron-based catalysts: Influence of the preparation route, Applied Catalysis A: General, 308 (2006) 19-30.

DOI: 10.1016/j.apcata.2006.04.007

Google Scholar

[42] X. Zhou, W. Xu, G. Liu, D. Panda, P. Chen, Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level, Journal of the American Chemical Society, 132 (2009) 138-146.

DOI: 10.1021/ja904307n

Google Scholar

[43] Z. -j. Wang, S. Skiles, F. Yang, Z. Yan, D.W. Goodman, Particle size effects in Fischer–Tropsch synthesis by cobalt, Catalysis Today, 181 (2012) 75-81.

DOI: 10.1016/j.cattod.2011.06.021

Google Scholar

[44] M. Trépanier, A.K. Dalai, N. Abatzoglou, Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions, Applied Catalysis A: General, 374 (2010).

DOI: 10.1016/j.apcata.2009.11.029

Google Scholar

[45] P.B. Radstake, J.P. d. Breejen, G.L. Bezemer, J.H. Bitter, K.P. d. Jong, V. Frøseth, A. Holmen, On the origin of the cobalt particle size effect in the fischer-tropsch synthesis, in: M.S. Fábio Bellot Noronha, S. -A. Eduardo Falabella (Eds. ) Studies in Surface Science and Catalysis, Elsevier, 2007, pp.85-90.

DOI: 10.1016/s0167-2991(07)80113-3

Google Scholar

[46] G. Prieto, A. Martínez, P. Concepción, R. Moreno-Tost, Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts, Journal of Catalysis, 266 (2009).

DOI: 10.1016/j.jcat.2009.06.001

Google Scholar

[47] A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, Deactivation studies of nano-structured iron catalyst in Fischer-Tropsch synthesis, Journal of Natural Gas Chemistry, 19 (2010) 333-340.

DOI: 10.1016/s1003-9953(09)60061-x

Google Scholar

[48] A. Nakhaei Pour, M.R. Housaindokht, S.M.K. Shahri, E.G. Babakhani, M. Irani, Size dependence on reduction kinetic of iron based Fischer–Tropsch catalyst, Journal of Industrial and Engineering Chemistry, 17 (2011) 596-602.

DOI: 10.1016/j.jiec.2011.05.002

Google Scholar

[49] V.N. Parmon, Thermodynamic analysis of the effect of the nanoparticle size of the active component on the adsorption equilibrium and the rate of heterogeneous catalytic processes, Dokl Phys Chem, 413 (2007) 42-48.

DOI: 10.1134/s0012501607030025

Google Scholar

[50] J. -Y. Park, Y. -J. Lee, P.R. Karandikar, K. -W. Jun, K. -S. Ha, H. -G. Park, Fischer–Tropsch catalysts deposited with size-controlled Co3O4 nanocrystals: Effect of Co particle size on catalytic activity and stability, Applied Catalysis A: General, 411–412 (2012).

DOI: 10.1016/j.apcata.2011.10.010

Google Scholar

[51] A. Nakhaei Pour, M. Housaindokht, F. Torabi, Water–gas shift kinetics over lanthanum-promoted iron catalyst in Fischer–Tropsch synthesis: thermodynamic analysis of nanoparticle size effect, J IRAN CHEM SOC, 11 (2014) 1639–1648.

DOI: 10.1007/s13738-014-0435-5

Google Scholar

[52] A. Nakhaei Pour, M. Housaindokht, A. Behroozsarand, M. Khodagholi, Thermodynamic analysis of nanoparticle size effect on kinetics in Fischer–Tropsch synthesis by lanthanum promoted iron catalyst, Appl. Phys. A, 116 (2014) 789-797.

DOI: 10.1007/s00339-013-8156-7

Google Scholar

[53] A. Nakhaei Pour, M. Housaindokht, H. Monhemi, Effect of solvent surface tension on the radius of hematite nanoparticles, Colloid Journal, 76 (2014) 782-787.

DOI: 10.1134/s1061933x14060143

Google Scholar

[54] A. Nakhaei Pour, M. Housaindokht, Fischer–Tropsch Synthesis Over CNT Supported Cobalt Catalysts: Role of Metal Nanoparticle Size on Catalyst Activity and Products Selectivity, Catal Lett, 143 (2013) 1328-1338.

DOI: 10.1007/s10562-013-1070-y

Google Scholar

[55] D.Y. Murzin, I.L. Simakova, On quantitative description of metal particles size effect in catalytic kinetics, Kinet Catal, 51 (2010) 828-831.

DOI: 10.1134/s002315841006008x

Google Scholar

[56] D.Y. Murzin, Thermodynamic analysis of nanoparticle size effect on catalytic kinetics, Chemical Engineering Science, 64 (2009) 1046-1052.

DOI: 10.1016/j.ces.2008.10.066

Google Scholar

[57] N. Fischer, E. van Steen, M. Claeys, Structure sensitivity of the Fischer–Tropsch activity and selectivity on alumina supported cobalt catalysts, Journal of Catalysis, 299 (2013) 67-80.

DOI: 10.1016/j.jcat.2012.11.013

Google Scholar

[58] J.P. den Breejen, J.R.A. Sietsma, H. Friedrich, J.H. Bitter, K.P. de Jong, Design of supported cobalt catalysts with maximum activity for the Fischer–Tropsch synthesis, Journal of Catalysis, 270 (2010) 146-152.

DOI: 10.1016/j.jcat.2009.12.015

Google Scholar

[59] J.P. den Breejen, P.B. Radstake, G.L. Bezemer, J.H. Bitter, V. Frøseth, A. Holmen, K.P. d. Jong, On the Origin of the Cobalt Particle Size Effects in Fischer−Tropsch Catalysis, Journal of the American Chemical Society, 131 (2009) 7197-7203.

DOI: 10.1021/ja901006x

Google Scholar

[60] L.A. De Wit, J.J.F. Scholten, Studies on pore structure of adsorbents and catalysts: II. Pore size distribution in synthetic chrysotile: the classical and corrected kelvin equation applied to nitrogen capillary condensation, Journal of Catalysis, 36 (1975).

DOI: 10.1016/0021-9517(75)90006-8

Google Scholar

[61] A.L. Dantas Ramos, P. d.S. Alves, D.A.G. Aranda, M. Schmal, Characterization of carbon supported palladium catalysts: inference of electronic and particle size effects using reaction probes, Applied Catalysis A: General, 277 (2004) 71-81.

DOI: 10.1016/j.apcata.2004.08.033

Google Scholar

[62] K.M. Cook, S. Poudyal, J.T. Miller, C.H. Bartholomew, W.C. Hecker, Reducibility of alumina-supported cobalt Fischer–Tropsch catalysts: Effects of noble metal type, distribution, retention, chemical state, bonding, and influence on cobalt crystallite size, Applied Catalysis A: General, 449 (2012).

DOI: 10.1016/j.apcata.2012.09.032

Google Scholar

[63] P.A. Chernavskii, C. Vei, A.Y. Khodakov, G.V. Pankina, N.V. Peskov, The influence of the temperature of calcining on Co particle-size distribution in the Co/Al2O3 catalyst for the Fischer-Tropsch synthesis, Russ. J. Phys. Chem., 82 (2008).

DOI: 10.1134/s0036024408060150

Google Scholar

[64] P.A. Chernavskii, G.V. Pankina, A.S. Lermontov, V.V. Lunin, Size Distribution of Cobalt Particles in Catalysts for the Fischer-Tropsch Synthesis, Kinet Catal, 44 (2003) 657-661.

DOI: 10.1023/a:1026146123264

Google Scholar

[65] J.M.G. Carballo, J. Yang, A. Holmen, S. García-Rodríguez, S. Rojas, M. Ojeda, J.L.G. Fierro, Catalytic effects of ruthenium particle size on the Fischer–Tropsch Synthesis, Journal of Catalysis, 284 (2011) 102-108.

DOI: 10.1016/j.jcat.2011.09.008

Google Scholar

[66] L.A. Cano, M.V. Cagnoli, N.A. Fellenz, J.F. Bengoa, N.G. Gallegos, A.M. Alvarez, S.G. Marchetti, Fischer-Tropsch synthesis. Influence of the crystal size of iron active species on the activity and selectivity, Applied Catalysis A: General, 379 (2010).

Google Scholar

[67] Ø. Borg, N. Hammer, S. Eri, O.A. Lindvåg, R. Myrstad, E.A. Blekkan, M. Rønning, E. Rytter, A. Holmen, Fischer–Tropsch synthesis over un-promoted and Re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes, Catalysis Today, 142 (2009).

DOI: 10.1016/j.cattod.2009.01.012

Google Scholar

[68] Ø. Borg, S. Eri, E.A. Blekkan, S. Storsæter, H. Wigum, E. Rytter, A. Holmen, Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables, Journal of Catalysis, 248 (2007) 89-100.

DOI: 10.1016/j.jcat.2007.03.008

Google Scholar

[69] G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, A.J. van Dillen, K.P. de Jong, Cobalt Particle Size Effects in the Fischer−Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts, Journal of the American Chemical Society, 128 (2006).

DOI: 10.1021/ja058282w

Google Scholar

[70] T. Bernhardt, U. Heiz, U. Landman, Chemical and Catalytic Properties of Size-Selected Free and Supported Clusters, in: U. Heiz, U. Landman (Eds. ) Nanocatalysis, Springer Berlin Heidelberg, 2007, pp.1-191.

DOI: 10.1007/978-3-540-32646-5_1

Google Scholar

[71] A. Nakhaei Pour, F. Riyahi, M.R. Housaindokht, M. Irani, S.M.K. Shahri, B. Hatami, Hydrocarbon production rates in Fischer-Tropsch synthesis over a Fe/Cu/La/Si catalyst, Journal of Energy Chemistry, 22 (2013) 119-129.

DOI: 10.1016/s2095-4956(13)60016-9

Google Scholar

[72] R. Zennaro, M. Tagliabue, C.H. Bartholomew, Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt, Catalysis Today, 58 (2000) 309-319.

DOI: 10.1016/s0920-5861(00)00264-9

Google Scholar

[73] Y. Yang, S. Pen, B. Zhong, Q. Wang, A method to determine the relative value of the barriers of carbon chain growth and termination in Fischer-Tropsch synthesis: elementary reaction kinetics for chain growth, Catal Lett, 19 (1993) 93-97.

DOI: 10.1007/bf00765205

Google Scholar

[74] J. Yang, Y. Liu, J. Chang, Y. -N. Wang, L. Bai, Y. -Y. Xu, H. -W. Xiang, Y. -W. Li, B. Zhong, Detailed Kinetics of Fischer−Tropsch Synthesis on an Industrial Fe−Mn Catalyst, Industrial & Engineering Chemistry Research, 42 (2003) 5066-5090.

DOI: 10.1021/ie030135o

Google Scholar

[75] Y. -N. Wang, W. -P. Ma, Y. -J. Lu, J. Yang, Y. -Y. Xu, H. -W. Xiang, Y. -W. Li, Y. -L. Zhao, B. -J. Zhang, Kinetics modelling of Fischer–Tropsch synthesis over an industrial Fe–Cu–K catalyst, Fuel, 82 (2003) 195-213.

DOI: 10.1016/s0016-2361(02)00154-0

Google Scholar

[76] C.G. Visconti, E. Tronconi, L. Lietti, R. Zennaro, P. Forzatti, Development of a complete kinetic model for the Fischer–Tropsch synthesis over Co/Al2O3 catalysts, Chemical Engineering Science, 62 (2007) 5338-5343.

DOI: 10.1016/j.ces.2006.12.064

Google Scholar

[77] D.Y. Murzin, Kinetic analysis of cluster size dependent activity and selectivity, Journal of Catalysis, 276 (2010) 85-91.

DOI: 10.1016/j.jcat.2010.09.003

Google Scholar

[78] D.Y. Murzin, Size-dependent heterogeneous catalytic kinetics, Journal of Molecular Catalysis A: Chemical, 315 (2010) 226-230.

DOI: 10.1016/j.molcata.2009.09.016

Google Scholar

[79] D. Murzin, Size dependent interface energy and catalytic kinetics on non-ideal surfaces, React Kinet Catal Lett, 97 (2009) 165-171.

DOI: 10.1007/s11144-009-0023-3

Google Scholar

[80] M.R. Housaindokht, A. Nakhaei Pour, Precipitation of hematite nanoparticles via reverse microemulsion process, Journal of Natural Gas Chemistry, 20 (2011) 687-692.

DOI: 10.1016/s1003-9953(10)60234-4

Google Scholar

[81] M.R. Housaindokht, A. Nakhaei Pour, Study the effect of HLB of surfactant on particle size distribution of hematite nanoparticles prepared via the reverse microemulsion, Solid State Sciences, 14 (2012) 622-625.

DOI: 10.1016/j.solidstatesciences.2012.01.016

Google Scholar

[82] M. Shroff, A. Datye, The importance of passivation in the study of iron Fischer-Tropsch catalysts, Catal Lett, 37 (1996) 101-106.

DOI: 10.1007/bf00813526

Google Scholar

[83] C. Bartholomew, Recent technological developments in Fischer-Tropsch catalysis, Catal Lett, 7 (1990) 303-315.

DOI: 10.1007/bf00764511

Google Scholar

[84] M.E. Dry, The Fischer–Tropsch process: 1950–2000, Catalysis Today, 71 (2002) 227-241.

DOI: 10.1016/s0920-5861(01)00453-9

Google Scholar

[85] M.E. Dry, Practical and theoretical aspects of the catalytic Fischer-Tropsch process, Applied Catalysis A: General, 138 (1996) 319-344.

DOI: 10.1016/0926-860x(95)00306-1

Google Scholar

[86] C.H. Bartholomew, M.W. Stoker, L. Mansker, A. Datye, Effects of pretreatment, reaction, and promoter on microphase structure and Fischer-Tropsch activity of precipitated iron catalysts, in: B. Delmon, G.F. Froment (Eds. ) Studies in Surface Science and Catalysis, Elsevier, 1999, pp.265-272.

DOI: 10.1016/s0167-2991(99)80475-3

Google Scholar

[87] J. Xu, C.H. Bartholomew, Temperature-Programmed Hydrogenation (TPH) and in Situ Mössbauer Spectroscopy Studies of Carbonaceous Species on Silica-Supported Iron Fischer−Tropsch Catalysts†, The Journal of Physical Chemistry B, 109 (2004) 2392-2403.

DOI: 10.1021/jp048808j

Google Scholar

[88] M.E. Dry, Chapter 7 - FT catalysts, in: S. André, D. Mark (Eds. ) Studies in Surface Science and Catalysis, Elsevier, 2004, pp.533-600.

Google Scholar

[89] T. Herranz, S. Rojas, F.J. Pérez-Alonso, M. Ojeda, P. Terreros, J.L.G. Fierro, Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas, Journal of Catalysis, 243 (2006) 199-211.

DOI: 10.1016/j.jcat.2006.07.012

Google Scholar

[90] C. Visconti, E. Tronconi, L. Lietti, P. Forzatti, S. Rossini, R. Zennaro, Detailed Kinetics of the Fischer–Tropsch Synthesis on Cobalt Catalysts Based on H-Assisted CO Activation, Top Catal, 54 (2011) 786-800.

DOI: 10.1007/s11244-011-9700-3

Google Scholar

[91] A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, Kinetics studies of nano-structured iron catalyst in Fischer-Tropsch synthesis, Journal of Natural Gas Chemistry, 19 (2010) 441-445.

DOI: 10.1016/s1003-9953(09)60080-3

Google Scholar

[92] A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, Kinetics of the water-gas shift reaction in Fischer-Tropsch synthesis over a nano-structured iron catalyst, Journal of Natural Gas Chemistry, 19 (2010) 362-368.

DOI: 10.1016/s1003-9953(09)60085-2

Google Scholar