Synthesis and Characterization of Nano-Silica from Teff Straw

Article Preview

Abstract:

Efficient utilization of agricultural residue is the need of today’s environment. Teff straw is one such agricultural residue which is available in high amount in east African continent particularly Ethiopia. In the present study, combination of heat and acid treatment has been used to extract nano-silica from teff straw. X-ray fluorescence (XRF) analysis showed presence of high amount of silicon dioxide (≈52%) in raw teff straw. Thermal treatment at 600°C for 4 hour increased the SiO2 concentration to ≈ 92% in its ash. Further acid treatment increased the concentration to ≈97%. Fourier transform infrared (FTIR) spectroscopy also confirmed increase in SiO2 after thermal and acid treatment. X-ray diffraction (XRD) analysis showed the silica of amorphous nature in teff straw ash before acid treatment (S-BAT) whereas crystallinity increased after acid treatment (S-AAT). Transmission electron microscopy (TEM) showed presence of uniform nano-disks shaped particles of 50 nm average particle size in acid treated teff straw ash. Compared to other agricultural residues high amount of silica availability as raw and its small diameter anatomy structure will make teff straw better source of silica material at lower heat and chemical treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-72

Citation:

Online since:

March 2017

Export:

Price:

* - Corresponding Author

[1] D. Adinata, W. M. A. W. Daud, M. K. Aroua, Carbon modified silica based adsorbent for potential application, J. Nanopart. Res. 9(4) (2007) 555-559.

DOI: 10.1007/s11051-005-8795-5

Google Scholar

[2] R. Sun, Cereal straw as a resource for sustainable biomaterial and biofuel, Elsevier, (2010).

Google Scholar

[3] E. Billa, B. Monties, Occurrence of silicon associated with lignin polysaccharide complexes isolated from gramineae (wheat straw) cell walls, Food Hydrocolloids 5 (1991) 189-195.

DOI: 10.1016/s0268-005x(09)80313-5

Google Scholar

[4] V. C. Srivastava, I. D. Mall, I. M. Mishra Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA), Chem. Eng. J. 132 (2007) 267–278.

DOI: 10.1016/j.cej.2007.01.007

Google Scholar

[5] S. Abo-El-Enein, M. Eissa, A. Diafullah, M. Rizk, F. Mohamed, Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash, J. Hazard. Mater. 172 (2009) 574–579.

DOI: 10.1016/j.jhazmat.2009.07.036

Google Scholar

[6] R. K. Iler, The Chemistry of Silica, Wiley, New York, (1979).

Google Scholar

[7] V. Saraswathy, H. W. Song, Corrosion performance of rice husk ash blended concrete, Constr. Build. Mater. 21 (2007)1779–1784.

DOI: 10.1016/j.conbuildmat.2006.05.037

Google Scholar

[8] N. Tipsotnaiyana, L. Jarupan, C. Pechyen, Synthesized silica powder from rice husk for printing raw materials application, Adv. Mater. Res. 506 (2012) 218–221.

DOI: 10.4028/www.scientific.net/amr.506.218

Google Scholar

[9] C. Wu, Rice hulls could nourish Silicon Valley, Sci. News 157 (2000) 164.

DOI: 10.2307/4012123

Google Scholar

[10] T. Suramaythangkoor, S. H. Gheewala, Potential of practical implementation of rice straw-based power generation in Thailand, Energy Policy 36 (2008) 3193–3197.

DOI: 10.1016/j.enpol.2008.05.002

Google Scholar

[11] A. Agbagla-Dohnani, P. Nozière, G. Clément, M. Doreau, In sacco degradability, chemical and morphological composition of 15 varieties of European rice straw, Anim. Feed Sci. Technol. 94(1-2) (2001) 15-27.

DOI: 10.1016/s0377-8401(01)00296-6

Google Scholar

[12] H. Hamdan, M. N. Muhid, S. Endud, E. Listiorini, Z. Ramli, 29Si MAS NMR, XRD and FESEM studies of rice husk silica for the synthesis of zeolites, J. Non-Cryst. Solids 211 (1997) 126-131.

DOI: 10.1016/s0022-3093(96)00611-4

Google Scholar

[13] U. Benjamin Iyenagbe, O. Mamat, Hydro thermo-baric processing and properties of nano silica from rice husk, App. Mechanics Mater. 152-154 (2012) 177-182.

DOI: 10.4028/www.scientific.net/amm.152-154.177

Google Scholar

[14] B. Margandan, A. Ramani, P. Muthiahpillai, T. J. Hyun, Dexterous template-free synthesis of ferrisilicate with MFI morphology using rice husk ash, J. Non-Cryst. Solids 356 (2010) 1204–1209.

DOI: 10.1016/j.jnoncrysol.2010.04.017

Google Scholar

[15] N. Chaturaporn, M. Shigeki, T. Chaiyot, Preparation and properties of porous glass using flyash as a raw material, J. Non-Cryst. Solids 355 (2009) 1737–1741.

Google Scholar

[16] A. Sharafat, J. Bo, Preparation of oxynitride glasses from woody biofuel ashes, J. Non-Cryst. Solids 356 (2010) 2774–2777.

DOI: 10.1016/j.jnoncrysol.2010.09.071

Google Scholar

[17] M. Erol., S. Kucukbayrak, A. Ersoy-Mericboyu, The application of differential thermal analysis to the study of isothermaland non-isothermal crystallization kinetics of coal fly ash based glasses, J. Non-Cryst. Solids 355 (2009) 569–576.

DOI: 10.1016/j.jnoncrysol.2009.01.023

Google Scholar

[18] J. P. Nayak, S. Kumar, J. Bera, Sol–gel synthesis of bioglass-ceramics using rice husk ash as a source for silica and its characterization, J. Non-Cryst. Solids 356 (2010) 1447–1451.

DOI: 10.1016/j.jnoncrysol.2010.04.041

Google Scholar

[19] N. Nazriati, S. Heru, A. Samsudin, Y. Minta, W. Sugeng, Using bagasse ash as a silica source when preparing silica aerogels via ambient pressure drying, J. Non-Cryst. Solids 400 (2014) 6–11.

DOI: 10.1016/j.jnoncrysol.2014.04.027

Google Scholar

[20] D. A. William, Rickard, T. Jadambaa, V. R. Arie, Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition, J. Non-Cryst. Solids 358 (2012) 1830–1839.

DOI: 10.1016/j.jnoncrysol.2012.05.032

Google Scholar

[21] ECSA, Agricultural sample survey report on area and production of major crops, The federal democratic republic of Ethiopia Central Statistical Agency, (2014).

Google Scholar

[22] FAO, International scheme for the co-ordination of Dairy Development and International Meat Development Scheme. Report of a Mission to Ethiopia, 27 May - 28 June. (1981) FAO, Rome.

Google Scholar

[23] R. Conradt, P. Pimkhaokham, U. Leela-Adisorn, Nano-structured silica from rice husk, J. Non-Cryst. Solids 145 (1992) 75-79.

DOI: 10.1016/s0022-3093(05)80433-8

Google Scholar

[24] I. D. Mall, V. C. Srivastava, N. K. Agarwa, Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses, Dyes and Pigments 69 (2006) 210-223.

DOI: 10.1016/j.dyepig.2005.03.013

Google Scholar

[25] A. M. Yusof, N. M. Nizam, N. A. A. Rashid, Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites. J. Porous Mater. 17 (2009) 39-47.

DOI: 10.1007/s10934-009-9262-y

Google Scholar

[26] A. Farook, C. Thiam-Seng, A. Jeyashelly, A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass, J. Sol-Gel Sci. Technol. 59 (2011) 580–583.

DOI: 10.1007/s10971-011-2531-7

Google Scholar

[27] T. H. Liou, C. C. Yang, Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash, Mater. Sci. Eng. 176 (2011) 521–529.

DOI: 10.1016/j.mseb.2011.01.007

Google Scholar

[28] L. Ting, O. Radzali, Y. Fei-Yee, Development of photoluminescent glass derived from rice husk, biomass and bio energy 59 (2013) 380-392.

DOI: 10.1016/j.biombioe.2013.08.028

Google Scholar

[29] J. I. Langford, A. J. C. Wilson, Scherrer after Sixty Years: A survey and some new results in the determination of crystallite size, J. Appl. Cryst. 11 (1978) 102-113.

DOI: 10.1107/s0021889878012844

Google Scholar

[30] L. Qiang, Z. Jin, L. Qingju, Z. Zhongqi, C. Juan, Sol–gel synthesis and characterization of silica film with two opposite structures: Nano-porous and protuberant, Mater. Chem. Phy. 114 (2009) 309–312.

DOI: 10.1016/j.matchemphys.2008.09.056

Google Scholar

[31] A. Arumugam, V. Ponnusami, Optimization of recovery of silica from sugarcane leaf ash and Ca/SBA-15 solid base for transesterification of Calophyllum inophyllum oil, J. Sol-Gel Sci. Technol. 74 (2015) 132–142.

DOI: 10.1007/s10971-014-3586-z

Google Scholar

[32] A. M. Fatma, S. M. El-Sheikh, B. Ahmed, Nano-silica and SiO2/CaCO3 nanocomposite prepared from semi-burned rice straw ash as modified papermaking fillers, Arabian J. Chem. (2014) http: /dx. doi. org/10. 1016/j. arabjc. 2014. 11. 032.

DOI: 10.1016/j.arabjc.2014.11.032

Google Scholar

[33] C. Hui, W. Fen, Z. Congyun, S. Yuanchang, J. Guiyun, Y. Shiling, Preparation of nano-silica materials: The concept from wheat straw, J. Non-Cryst. Solids 356 (2010) 2781–2785.

DOI: 10.1016/j.jnoncrysol.2010.09.051

Google Scholar

[34] L. Ping, H. You-Lo, Highly pure amorphous silica nano-disks from rice straw, Powder Technol. 225 (2012) 149–155.

DOI: 10.1016/j.powtec.2012.04.002

Google Scholar

[35] S. Wattanasiriwech, D. Wattanasiriwech, J. Svasti, Production of amorphous silica nanoparticles from rice straw with microbial hydrolysis pretreatment, J. Non-Cryst. Solids 356 (2010) 1228–1232.

DOI: 10.1016/j.jnoncrysol.2010.04.032

Google Scholar