Synthesis and Bioactivity of RGO/TiO2-Noble Metal Nanocomposite Flakes

Article Preview

Abstract:

This study aims to describe the influence of adding graphene oxide to TiO2-noble metal (Me=Ag, Au or Pd) composite nanoparticles on their bioactivity (formation of RGO/TiO2-Me nanocomposite system). The obtained nanocomposite flakes and reference TiO2-Me nanoparticles were characterized using SEM, HRTEM and XPS spectroscopy, N2 sorption analysis and helium pycnometer. The analysis of the antibacterial properties of synthesized nanocomposites revealed a growth inhibiting effect of TiO2-Ag particles on gram positive bacteria such as: Staphylococcus aureus, Sarcina lutea and Bacillus subtilis. In the case of nanocomposite flakes containing RGO the visible changes in bacteriostatic properties were observed, including unexpected reversal of the antimicrobial activity of silver-containing nanoparticles into the stimulation of growth of applied bacterial strains. The stimulation of growth was not observed for TiO2-Au and Pd nanoparticles deposited on the surface of RGO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-48

Citation:

Online since:

May 2017

Export:

Price:

[1] A.M. Jastrzębska, A.R. Olszyna, The ecotoxicity of Graphene Family Materials: current status, knowledge gaps and future needs, J. Nanopart. Res. 17 (2015) 1-21.

DOI: 10.1007/s11051-014-2817-0

Google Scholar

[2] A.M. Jastrzębska, P. Kurtycz, A.R. Olszyna, Recent advances in Graphene Family Materials toxicity investigations, J. Nanopart. Res. 14 (2012) 1-21.

DOI: 10.1007/s11051-012-1320-8

Google Scholar

[3] L. Liu, H. Bai, J. Liu, D.D. Sun, Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation, J. Hazard Mat. 261 (2013) 214-223.

DOI: 10.1016/j.jhazmat.2013.07.034

Google Scholar

[4] X. Yang, J. Quin, Y. Jiang, K. Chen, X. Yan, D. Zhang, R. Li, H. Tang, Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria, Applied Catalysis B: Environmental 166-167 (2015).

DOI: 10.1016/j.apcatb.2014.11.028

Google Scholar

[5] E. Vasilaki, I. Georgaki, D. Vernardou, M. Vamvakaki, N. Katsarakis, Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity, Applied Surface Science 353 (2015) 865-872.

DOI: 10.1016/j.apsusc.2015.07.056

Google Scholar

[6] A.M. Jastrzębska, J. Karcz, R. Letmanowski, D. Zabost, E. Ciecierska, M. Siekierski, A. Olszyna, Synthesis of RGO/TiO2 nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements, J. Alloys Compd. 679 (2016).

DOI: 10.1016/j.jallcom.2016.04.043

Google Scholar

[7] A.M. Jastrzębska, J. Karcz, E. Karwowska, A. Fiedorczuk, A. Olszyna, Synthesis and Bioactivity of Reduced Graphene Oxide/Alumina-Noble Metal Nanocomposite Flakes, Int. J. Appl. Ceram. Technol. 13 (2016) 856-870.

DOI: 10.1111/ijac.12555

Google Scholar

[8] A.M. Jastrzębska, J. Karcz, R. Letmanowski, D. Zabost, E. Ciecierska, J. Zdunek, E. Karwowska, M. Siekierski, A. Olszyna, A. Kunicki, Synthesis of the RGO/Al2O3 core-shell nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements, Appl. Surf. Sci. 362 (2016).

DOI: 10.1016/j.apsusc.2015.10.125

Google Scholar

[9] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr., R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47 (2009).

DOI: 10.1016/j.carbon.2008.09.045

Google Scholar

[10] A. Peter, L. Mihaly-Cozmuta, A. Mihaly-Cozmuta, C. Nicula, A. Jastrzębska, P. Kurtycz, A. Olszyna, Morphology, structure, and photoactivity of two types of graphene oxide–TiO2 composites, Chem. Pap. 69 (2015) 839-855.

DOI: 10.1515/chempap-2015-0088

Google Scholar

[11] A. Peter, L. Mihaly-Cozmuta, A. Mihaly-Cozmuta, C. Nicula, C. Cadar, A. Jastrzębska, P. Kurtycz, A. Olszyna, A. Vulpoi, V. Danciu, T. Radu, L. Baia, Silver functionalized titania-silica xerogels: Preparation, morpho-structural and photocatalytic properties, kinetic modeling, J. Alloys Compd. 648 (2015).

DOI: 10.1016/j.jallcom.2015.07.022

Google Scholar

[12] W. Ziemkowska, D. Basiak, P. Kurtycz, A. Jastrzębska, A. Olszyna, A. Kunicki, Nano-titanium oxide doped with gold, silver and palladium - synthesis and structural characterization, Chem. Pap. 68 (2014) 959-968.

DOI: 10.2478/s11696-014-0537-7

Google Scholar

[13] A. M. Jastrzębska, P. Kurtycz, A. R. Olszyna, J. Jureczko, A. R. Kunicki, New alumina-based novel ceramic nano-pigments: An alternative to the Purple of Cassius, Int. J. Appl. Ceram. Technol. 11 (2014) 738-744.

DOI: 10.1111/ijac.12099

Google Scholar

[14] G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff, Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity, Carbon 48 (2010) 630-635.

DOI: 10.1016/j.carbon.2009.10.003

Google Scholar

[15] G. Wang, F. Quian, C.W. Saltikov, Y. Jiao, Microbial reduction of graphene oxide by Shewanella, Nano Res. 4 (2011) 563-570.

DOI: 10.1007/s12274-011-0112-2

Google Scholar

[16] O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner, Carbon 50 (2012) 1853-1860.

DOI: 10.1016/j.carbon.2011.12.035

Google Scholar