Participation Factor and Vibration of Carbon Nanotube with Vacancies

Article Preview

Abstract:

In this paper the finite element simulation is exploited to investigate dynamical behaviors of perfect and defected Single Walled Carbon Nanotube (SWCNT). The natural frequencies, mode shapes and modal participation factors those not be considered elsewhere, are consider through this analysis. Energy equivalent model is adopted to find a linkage between the energy stored in chemical atomic bonds and potential energy stored in mechanical beam structure. Nanotube software modeler is used to generate a geometry of SWCNT structure by defining its chiral angle, length of nanotube and bond distance between two carbon atoms. The whole tube of SWCNT is simulated as cage and bonds between each two atoms are represented by beam (A BEAM 188) with circular cross section, and carbon atoms as nodes. Numerical results are presented to show the fundamental frequencies and modal participation factors of SWCNTs. The effect of vacancies on activation and deactivation of vibration modes are illustrated. During manufacturing of SWCNTs, atoms may be not perfectly bonded with adjacent and some vacancies may be found, so this defect is considered in this study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-174

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] M. A., Eltaher, & M. A., Agwa, Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model,, Sensors and Actuators A: Physical, 246, (2016), pp.9-17.

DOI: 10.1016/j.sna.2016.05.009

Google Scholar

[2] M. A., Eltaher, F. F., Mahmoud, A. E., Assie, & E. I. Meletis, Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams,, Applied Mathematics and Computation, 224, (2013), 760-774.

DOI: 10.1016/j.amc.2013.09.002

Google Scholar

[3] M. J., Treacy, T. W., Ebbesen, & J. M., Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes,, Nature, 381(6584), (1996), 678.

DOI: 10.1038/381678a0

Google Scholar

[4] A., Krishnan, E., Dujardin, T. W., Ebbesen, P. N., Yianilos, & M. M. J. Treacy, Young's modulus of single-walled nanotubes,, Physical review B, 58(20), (1998), 14013.

DOI: 10.1103/physrevb.58.14013

Google Scholar

[5] J. P., Salvetat, J. M., Bonard, N. H., Thomson, A. J., Kulik, L. Forro, W., Benoit, , & L., Zuppiroli, Mechanical properties of carbon nanotubes,, Applied Physics A, 69(3), (1999), pp.255-260.

DOI: 10.1007/s003390050999

Google Scholar

[6] J. C., Charlier, Defects in carbon nanotubes,. Accounts of chemical research, 35(12), (2002), pp.1063-1069.

Google Scholar

[7] S. L., Mielke, D., Troya, S., Zhang, J. L., Li, S., Xiao, R., Car, ... & T., Belytschko, The role of vacancy defects and holes in the fracture of carbon nanotubes,, Chemical Physics Letters, 390(4-6), (2004), pp.413-420.

DOI: 10.1016/j.cplett.2004.04.054

Google Scholar

[8] Y., Ma, P. O., Lehtinen, A. S., Foster, & R. M. Nieminen, Magnetic properties of vacancies in graphene and single-walled carbon nanotubes,, New Journal of Physics, 6(1), (2004), 68.

DOI: 10.1088/1367-2630/6/1/068

Google Scholar

[9] L. V., Liu, W. Q., Tian, & Y. A., Wang, Ozonization at the vacancy defect site of the single-walled carbon nanotube,, The Journal of Physical Chemistry B, 110(26), (2006), pp.13037-13044.

DOI: 10.1021/jp055999x

Google Scholar

[10] Q., Wang, & V. K., Varadan, Wave characteristics of carbon nanotubes,, International Journal of Solids and Structures, 43(2), (2006), pp.254-265.

DOI: 10.1016/j.ijsolstr.2005.02.047

Google Scholar

[11] S. O., Gajbhiye, & S. P. Singh, Vibration characteristics of open-and capped-end single-walled carbon nanotubes using multi-scale analysis technique incorporating Tersoff–Brenner potential,, Acta Mechanica, 226(11), (2015), pp.3565-3586.

DOI: 10.1007/s00707-015-1390-7

Google Scholar

[12] A., Zemri, M. S. A., Houari, A. A., Bousahla, & A.Tounsi, A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory,, Structural Engineering and Mechanics, 54(4), (2015), pp.693-710.

DOI: 10.12989/sem.2015.54.4.693

Google Scholar

[13] F. L., Chaht, A., Kaci, M. S. A., Houari, Tounsi, O. A., Bég, & S. R. Mahmoud, Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect,, Steel and Composite Structures, 18(2), (2015), pp.425-442.

DOI: 10.12989/scs.2015.18.2.425

Google Scholar

[14] I., Belkorissat, M. S. A., Houari, A., Tounsi, E. A., Bedia, & S. R. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model,, Steel Composite Structure, 18(4), (2015), pp.1063-1081.

DOI: 10.12989/scs.2015.18.4.1063

Google Scholar

[15] M. A., Eltaher, S., El-Borgi, & J. N. Reddy, Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs,, Composite Structures, 153, (2016), 902-913.

DOI: 10.1016/j.compstruct.2016.07.013

Google Scholar

[16] M. A., Agwa, & M. A., Eltaher, Vibration of a carbyne nanomechanical mass sensor with surface effect,, Applied Physics A, 122(4), (2016), 335.

DOI: 10.1007/s00339-016-9934-9

Google Scholar

[17] M. A., Eltaher, M., Agwa, & A., Kabeel, Vibration Analysis of Material Size-Dependent CNTs Using Energy Equivalent Model,, Journal of Applied and Computational Mechanics, 4(2), (2018), 75-86.

Google Scholar

[18] F., Bounouara, K. H., Benrahou, I., Belkorissat, & A. Tounsi, A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation,, Steel and Composite Structures, 20(2), (2016), pp.227-249.

DOI: 10.12989/scs.2016.20.2.227

Google Scholar

[19] M., Ahouel, M. S. A., Houari, E. A., Bedia, & A. Tounsi, Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept,, Steel and Composite Structures, 20(5), (2016), pp.963-981.

DOI: 10.12989/scs.2016.20.5.963

Google Scholar

[20] B., Kadari, A., Bessaim, A., Tounsi, H., Heireche, A. A., Bousahla, & , M. S. A., Houari Buckling analysis of orthotropic nanoscale plates resting on elastic foundations,. In Journal of Nano Research, 55, (2018), pp.42-56.

DOI: 10.4028/www.scientific.net/jnanor.55.42

Google Scholar

[21] R., Hamza-Cherif, M., Meradjah, M., Zidour, A., Tounsi, S., Belmahi, & Bensattalah, T., Vibration analysis of nano beam using differential transform method including thermal effect,, In Journal of Nano Research 54, (2018), pp.1-14.

DOI: 10.4028/www.scientific.net/jnanor.54.1

Google Scholar

[22] A. H., Esbati, & S., Irani, Probabilistic mechanical properties and reliability of carbon nanotubes,, Archives of Civil and Mechanical Engineering, 18(2), (2018), 532-545.

DOI: 10.1016/j.acme.2017.05.001

Google Scholar

[23] A., Shahabodini, R., Ansari, & M., Darvizeh, Atomistic-continuum modeling of vibrational behavior of carbon nanotubes using the variational differential quadrature method,, Composite Structures, 185, (2018), pp.728-747.

DOI: 10.1016/j.compstruct.2017.11.028

Google Scholar

[24] H., Bellifa, K. H., Benrahou, A. A., Bousahla, A., Tounsi, & S. R. Mahmoud, A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams,, Structural Engineering and Mechanics, 62(6), (2017), pp.695-702.

Google Scholar

[25] K., Bouafia, A., Kaci, M. S. A., Houari, A., Benzair, & A. Tounsi, A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams,, Smart Structures and Systems, 19(2), (2017), pp.115-126.

DOI: 10.12989/sss.2017.19.2.115

Google Scholar

[26] A., Mouffoki, E. A., Bedia, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory,, Smart Structures and Systems, 20(3), (2017), 369-383.

Google Scholar

[27] H., Khetir, M. B., Bouiadjra, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates,, Structural Engineering and Mechanics, 64(4), (2017), pp.391-402.

Google Scholar

[28] A., Besseghier, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory,, Smart Structures and Systems, 19(6), (2017), pp.601-614.

Google Scholar

[29] B., Karami, M., Janghorban, & A. Tounsi, Effects of triaxial magnetic field on the anisotropic nanoplates,, Steel and Composite Structures, 25(3), (2017), pp.361-374.

Google Scholar

[30] B., Karami, M., Janghorban, & A. Tounsi, Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory,, Thin-Walled Structures, 129, (2018), pp.251-264.

DOI: 10.1016/j.tws.2018.02.025

Google Scholar

[31] B., Karami, M., Janghorban, & A. Tounsi,, Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles,, Steel and Composite Structures, 27(2), (2018), pp.201-216.

Google Scholar

[32] J., Vila, J., Fernández-Sáez, & R., Zaera, Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model,, Journal of Sound and Vibration, 420, (2018), pp.296-314.

DOI: 10.1016/j.jsv.2018.01.040

Google Scholar

[33] A., Bouadi, A. A., Bousahla, M. S. A., Houari, H., Heireche, & A. Tounsi, A new nonlocal HSDT for analysis of stability of single layer graphene sheet,, Advances in Nano Research, 6(2), (2018), pp.147-162.

Google Scholar

[34] A., Besseghier, H., Heireche, Bousahla, A. A., Tounsi, A., & Benzair, A., Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix,, Advances in Nano Research, 3(1), (2015), p.029.

DOI: 10.12989/anr.2015.3.1.029

Google Scholar

[35] Y., Mokhtar, H., Heireche, A. A., Bousahla, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory,, Smart Structures and Systems, 21(4), (2018), pp.397-405.

Google Scholar

[36] M., Yazid, H., Heireche, A., Tounsi, A. A., Bousahla, & M. S. A. Houari, A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium,, Smart Structures and Systems, 21(1), (2018), pp.15-25.

DOI: 10.2174/2405461501666161130121643

Google Scholar

[37] B., Bakhadda, M. B., Bouiadjra, F., Bourada, A. A., Bousahla, A., Tounsi, & S. R., Mahmoud, Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation,, Wind and Structures, 27(5), (2018), pp.311-324.

Google Scholar

[38] M.A. Eltaher, N. Mohamed, S. Mohamed and L.F. Seddek Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model,, Journal of Nano Research, (accepted)‏.

DOI: 10.4028/www.scientific.net/jnanor.57.136

Google Scholar

[39] M. A. Eltaher, T.A. Almalki, K. I.E. Ahmed, and K. H. Almitani, Characterization and Behaviors of Single Walled Carbon Nanotube by Equivalent-Continuum Mechanics Approach,, Advances in Nano Research, (Accepted).

Google Scholar

[40] A. K., Rappé, C. J., Casewit, K. S., Colwell, W. A., Goddard Iii, & W. M., Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American chemical society, 114(25), (1992), pp.10024-10035.

DOI: 10.1021/ja00051a040

Google Scholar

[41] Y., Wu, X., Zhang, A. Y. T., Leung, & W., Zhong, An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes,, Thin-Walled Structures, 44(6), (2006), pp.667-676.

DOI: 10.1016/j.tws.2006.05.003

Google Scholar

[42] M. M., Shokrieh, & R. Rafiee, Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach,,Materials & Design, 31(2), (2010), pp.790-795.

DOI: 10.1016/j.matdes.2009.07.058

Google Scholar