Optical and Structural Properties of TOPO/HDA Capped CuS Nanocrystals via Thermal Decomposition of Bis(N-Diisopropyldithiocarbamate)Cu(II) Complex

Article Preview

Abstract:

We present the rational synthesis of novel nanocrystals CuS (nc-CuS) by single source molecular precursor (SSMP) method. Among the present materials synthetic routes, the SSMP route is high efficient and comfortable way to construct nanostructured materials. Both CuS nanocrystals capped with hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) have been synthesized by thermolysing bis (N-diisopropyldithiocarbamate)Cu (II) complex at 180 °C. Various physicochemical characterizations such as SEM images of nc-CuS exhibited uniform exfoliated surface morphologies with uniform continuous network of about 50 μm agglomerated particles. Our method could be broadly applicable for the preparation of other high quality yield metal sulfide nanostructures

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-165

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] S.K. Nath, P.K. Kalita, Nanosci. Nanotechnol. Inter. J. 2 (2012) 8-12.

Google Scholar

[2] S.S. Kalanur, H. Seo, RSC Adv. 7 (2017) 11118-11122.

Google Scholar

[3] S. Riyaz, A. Parveen, A. Azam, Perspect. Sci. 8 (2016) 632-635.

Google Scholar

[4] A.D. Savariraj, K.K. Viswanathan, K. Prabakar, Electrochim. Acta 149 (2014) 364-369.

Google Scholar

[5] S. Ananthakumar, J.R. Kumar, S.M. Babu, Optik-Int. J. Light Electron Optics 127 (2016) 10360-10365.

DOI: 10.1016/j.ijleo.2016.08.058

Google Scholar

[6] J.S. Arellano, A.K. Vega, E. Rosendo-Andrés, T. Díaz-Becerril, R. Romano-Trujillo, A.I. Oliva, W. De la Cruz, J.M. Lugo, C. Morales-Ruíz, R. Galeazzi-Isasmendi, G. García-Salgado, J. Appl. Res. Tech. 14 (2016) 225-231.

DOI: 10.1016/j.jart.2016.05.008

Google Scholar

[7] J. Li, Q. Wu, J. Wu, In Handbook of Nanoparticles 2015, pp.1-28. Springer, Cham.

Google Scholar

[8] M. Bondesgaard, J. Becker, J. Xavier, H. Hellstern, A. Mamakhel, B.B. Iversen, J. Supercrit. Fluids 113 (2016) 166-197.

DOI: 10.1016/j.supflu.2016.02.012

Google Scholar

[9] W. Shi, X. Zhang, G. Che, W. Fan, C. Liu, Chem. Eng. J. 215 (2013) 508-516.

Google Scholar

[10] P.A. Ajibade, N.L. Botha, Results Phys. 6 (2016) 581-589.

Google Scholar

[11] K. Ramasamy, M.A. Malik, N. Revaprasadu, P. O'Brien, Chem. Mater. 25 (2013) 3551-3569.

Google Scholar

[12] M.C. Brelle, C.L. Torres-Martinez, J.C. McNulty, R.K. Mehra, J.Z. Zhang, Pure Appl. Chem. 72 (2000) 101-117.

Google Scholar

[13] J.Z. Mbese, P.A. Ajibade, J. Sulfur Chem. 35 (2014) 438-449.

Google Scholar

[14] D.C Onwudiwe, A.C. Ekennia, Res. Chem. Interned. 43 (2017) 1465-1485.

Google Scholar

[15] N. Kavitha, P.A. Lakshmi, J. Saudi Chem. Soc. 21 (2017) S457-S466.

Google Scholar

[16] B.M. Kukovec, M. Kakša, Z. Popović, Croat. Chem. Acta 85 (2012) 479-483.

DOI: 10.5562/cca2119

Google Scholar

[17] E. Dilena, Y. Xie, R. Brescia, M. Prato, L. Maserati, R. Krahne, A. Paolella, G. Bertoni, M. Povia, I. Moreels, L. Manna, Chem. Mater. 25 (2013) 3180-3187.

DOI: 10.1021/cm401563u

Google Scholar

[18] S.H. Chaki, M.P. Deshpande, J.P. Tailor, Thin Solid Films 550 (2014) 291-297.

Google Scholar