High Damping in Ferroelectric and Ferrimagnetic Ceramics

Article Preview

Abstract:

High damping materials exhibiting a loss factor higher than 10-2 are generally considered as polymer or metallic materials. But, it will be interesting to consider ferroelectric or ferrimagnetic ceramics, in which internal friction can be due to the motion of ferroelectric or magnetic domains. High level of internal friction can be obtained in these ceramics in a given temperature range. In the case of ferroelectric ceramics, hard ferroelectrics, such as BaTiO3 or PZT, can show some relaxation peaks below the Curie temperature due the motion of domain walls and the interaction between the domain walls and the oxygen vacancies or cationic vacancies. In the case of ferrimagnetic ceramics, some anelastic manifestations due to the ferrimagnetic domain walls appear below the Curie Temperature TC. These peaks are linked to the interaction of domain walls with cation vacancies or cation interstitials or the lattice. Above the Curie temperature, a relaxation mechanism due to the exchange of cations Mn3+ and their vacancies on octahedral sites should occur.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-166

Citation:

Online since:

September 2006

Export:

Price:

[1] R. Schaller, G. Fantozzi and G. Gremaud: Mechanical Spectroscopy Q-1 2001 (Trans Tech Publications, Switzerland, 2001).

Google Scholar

[2] Sh. Kazemi and G. Fantozzi: ICIFMS-14, Kyoto (Japan) to be published.

Google Scholar

[3] V. S. Postnikov, V. S. Pavlov and S. K. Turkov: J. Phys. Chem. Solids Vol. 31 (1970), p.1785.

Google Scholar

[4] V. S. Postnikov, V. S. Pavlov, S. Gridnev and S. K. Turkov: Soviet. Phys. Solid State Vol. 10 (1968), p.1267.

Google Scholar

[5] Y. N. Huang, Y. N. Wang and H. M. Shen: Phys. Rev. B Vol. 46 (1992), p.3290.

Google Scholar

[6] Y. N. Huang, X. Li, Y. Ding, H. M. Shen, Z. F. Zhang, Y. N. Wang, C. F. Fang and S. H. Zhuo: J. Phys. IV Vol. 6 (1996), p. C8-815.

Google Scholar

[7] B. L. Cheng, M. Gabbay and G. Fantozzi: J. Mat. Sci. Vol. 31 (1996), p.4141.

Google Scholar

[8] E. Bourim, H. Idrissi, B. Cheng, M. Gabbay and G. Fantozzi: J. Phys. IV Vol. 6 (1996), p. C8633.

Google Scholar

[9] E. Bourim, H. Tanaka, M. Gabbay, G. Fantozzi and B. Cheng: J. Appl. Phys. Vol 91 (2002), p.6662.

Google Scholar

[10] A. Bouzid, M. Gabbay and G. Fantozzi: J. Mat. Sci. Eng. Vol. A370 (2004), p.123.

Google Scholar

[11] G. Arlt: J. Mat. Sci. Vol. 25 (1990), p.2655.

Google Scholar

[12] G. Fantozzi, H. Idrissi, C. Favotto and M. Roubin: J. Eur. Ceramic. Soc. Vol. 20 (2000), p.1671.

Google Scholar

[13] S. J. Ahns, C. S. Yoon, S. G. Yoon, C. K. Kim, T. Y. Byun and K. S. Hong: J. Mat. Sci. And Eng. Vol. 84 (2001), p.146.

Google Scholar

[14] J. Töpfer, L. Liu and R. Dieckmann: J. Solid State Ionics Vol. 159 (2003), p.397.

Google Scholar

[15] Y. N. Wang, Y. N. Huang, H. M. Shen and Z. F. Zhang: J. Phys. IV Vol. 6 (1996), p. C8-505.

Google Scholar