Damping Mechanisms in Oxide Materials and Their Potential Applications

Article Preview

Abstract:

In this paper, we review the damping mechanisms in oxide materials, such as the short-range jump of oxygen vacancies and cation vacancies, movement of domain walls, and grain boundary sliding. Some examples in doped ZrO2, La2CuO4+δ, La2Mo2O9 and other oxide materials are briefly discussed, in which the damping capacity can reach as high as 30%. These oxides could be possibly applied as high damping materials either in the form of bulk components, or as additives in composites, or as hard damping coatings. In the last two potential applications, the high hardness and strength as well as high damping capacity of the oxides are simultaneously exploited, which cannot be realized by the usual high-damping metals and alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-172

Citation:

Online since:

September 2006

Export:

Price:

[1] I. G. Riechie and Z. L. Pan: Metall. Trans. A Vol. 22 (1991), p.607.

Google Scholar

[2] I. G. Riechie, Z. L. Pan and F. E. Goodwin: Metall. Trans. A Vol. 22 (1991), p.617.

Google Scholar

[3] S. A. Golovin and I. S. Golovin, in: T. S. Kê (Ed), Proc. ICIFUAS-9 (International Academic Publishers, Pergamon Press, 1989), p.345.

Google Scholar

[4] F. Yin, S. Takamori, Y. Ohsawa, A. Sato and K. Kawahara: J. Japan Inst. Metals Vol. 65 (2001), p.607.

Google Scholar

[5] Q. F. Fang, Z. G. Zhu and T. S. Kê: Physics Vol. 29 (2000), p.541.

Google Scholar

[6] F. Yin: Acta Metall. Sinica Vol. 39 (2003), p.1139.

Google Scholar

[7] A. S. Nowick and B. S. Berry: Anelastic Relaxation in Crystalline Solids (Academic Press, New York and London, 1972), pp.176-349.

Google Scholar

[8] F. Cordero, R. Cantelli and M. Ferretti: J. Alloy Compd. Vol. 310 (2000), p.16.

Google Scholar

[9] S. X. Wang, W. Liu and L. D. Zhang: Chinese J. Low Temp. Phys. Vol. 21 (1999), p.88.

Google Scholar

[10] J. X. Zhang, G. M. Lin, W. G. Zeng, K. F. Liang, Z. C. Lin, G. G. Siu, M. J. Stokes and P. C. W. Fung: Supercond. Sci. Technol. Vol. 3 (1990), p.113; p.163.

Google Scholar

[11] M. Weller and H. Schubert: J. Am. Ceram. Soc. Vol. 69 (1986), p.573.

Google Scholar

[12] M. Weller, B. Damson and A. Lakki: J. Alloy Compd. Vol. 310 (2000), p.47.

Google Scholar

[13] X. P. Wang and Q. F. Fang: J, Phys: Condens. Matter. Vol. 13 (2001), p.1641.

Google Scholar

[14] X. P. Wang and Q. F. Fang: Solid State Ionics Vol. 146 (2002), p.185.

Google Scholar

[15] X. P. Wang and Q. F. Fang: Phys. Rev. B Vol. 65 (2002), p.064304.

Google Scholar

[16] P. Lacorre, F. Goutenoire, O. Bohnke and R. Retoux: Nature Vol. 404 (2000), p.856.

DOI: 10.1038/35009069

Google Scholar

[17] F. Goutenoire, O. Isnard and P. Lacorre: Chem. Mater. Vol. 12 (2000), p.2575.

Google Scholar

[18] Q. F. Fang, X. P. Wang, Z. G. Yi and G. G. Zhang: Acta Metall. Sinica Vol. 39 (2003), p.1133.

Google Scholar

[19] Q. F. Fang, X. P. Wang, G. G. Zhang and Z. G. Yi: J. Alloy Compd. Vol. 355 (2003), p.177.

Google Scholar

[20] L. Donzel and R. Schaller: Acta Metall. Vol. 46 (1998), p.5187.

Google Scholar

[21] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics (John Wiley, New York, NY, 1976).

Google Scholar

[22] A. Bouzid, M. Gabbay and G. Fantozzi: Mater. Sci. Eng. A Vol. 370 (2004), p.123.

Google Scholar

[23] C. Wang, Q. F. Fang, Y. Shi and Z. G. Zhu: Mater. Res. Bull. Vol. 36 (2001) p.2657.

Google Scholar

[24] B. L. Cheng, M. Gabbay, G. Fantozzi and W. Duffy: J. Alloy Compd. Vol. 211/212 (1994), p.352.

Google Scholar

[25] Y. N. Wang and Y. N. Huang: J. Alloy Compd. Vol. 211/212 (1994), p.356.

Google Scholar

[26] Y. N. Wang, Y. N. Huang, H. M. Shen and Z. F. Zhang: J. de Physique IV Vol. 6 (1996), p. C8-505.

Google Scholar

[27] R. Schaller: J. Alloy Compd. Vol. 310 (2000), p.7.

Google Scholar

[28] G. Schoeck, E. Bisogni and J. Shyne: Acta Metall. Vol. 12 (1964), p.1466.

Google Scholar

[29] A. Lakki and R. Schaller, in: A. Wolfenden, V.K. Kinra (Eds. ), Mechanics and Mechanisms of Material Damping (ASTM STP 1304, 1997), p.128.

Google Scholar

[30] A. Lakki, R. Schaller, C. Carry and W. Benoit: Acta Metall. Vol. 46 (1998), p.689.

Google Scholar

[31] K. Ota and G. Pezzoti: J. de Physique IV Vol. 6 (1996), p. C8-349.

Google Scholar

[32] A. Lakki and R. Schaller: J. de Physique IV Vol. 6 (1996), p. C8-331.

Google Scholar

[33] K. Nishiyama, T. Abe, T. Sakaguchi and N. Momozawa: J. Alloy Compd. Vol. 355 (2003), p.103.

Google Scholar

[34] R. Asmatulu, R. Claus, J. Mecham and D. Inman: Mechanical Properties of Nanostructured Materials and Nanocomposites Symposium (Mater. Res. Soc. Symposium Proceedings, 2004) Vol. 791, p.31.

Google Scholar

[35] A. N. Kachevskii: Tech. Phys. Lett. Vol. 27 (2001), p.1.

Google Scholar

[36] S. Patsias, C. Saxton and M. Shipton: Mater. Sci. Eng. A Vol. 370 (2004), p.412.

Google Scholar

[37] Z. S. Li, Q. F. Fang, S. Veprek and S. Z. Li: Mater. Sci. Eng. A Vol. 370 (2004), p.186.

Google Scholar

[38] Z. S. Li, Q. F. Fang, S. Veprek and S. Z. Li: Rev. Sci. Instrum. Vol. 74, (2003), p.2477.

Google Scholar