Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles

Article Preview

Abstract:

Two finite-element-based, full-field computational methods and algorithms for use in Structural Health Management (SHM) systems are reviewed. Their versatility, robustness, and computational efficiency make them well suited for real-time, large-scale space vehicle, structures, and habitat applications. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future SHM systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-66

Citation:

Online since:

September 2007

Export:

Price:

[1] W. H. Prosser, S. G. Allison, S. E. Woodard, R. A. Wincheski, E. G. Cooper, D. C. Price, M. Hedley, M. Prokopenko, D. A. Scott, A. Tessler and J. L. Spangler: Proc. 2nd Australasian Workshop on Structural Health Monitoring, Melbourne, Australia, (2004).

Google Scholar

[2] S. Shkarayev, A. Raman and A. Tessler: Proceedings of First European Workshop on Structural Health Monitoring, Cachan (Paris), France, 2002, p.1145, (2002).

Google Scholar

[3] P. Bogert, E. Haugse, and R. Gehrki: 44 th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, (2003).

DOI: 10.2514/6.2003-1626

Google Scholar

[4] A. Tessler and J. Spangler: Proceedings of 2 nd European Workshop on Structural Health Monitoring, Munich, Germany, 2004, p.83.

Google Scholar

[5] A. Tessler and J. Spangler: Computer Methods in Applied Mechanics and Engineering, Vol. 194 (2005), p.327.

Google Scholar

[6] A. Parker, L. Richards, W. Ko, A. Piazza, V. Tran: (http: /hdl. handle. net/2060/20060024636, NASA Dryden Flight Center, 2006).

Google Scholar

[7] W. K. Belvin: Space 2004 Conference and Exhibit, San Diego, California, AIAA 2004-5898, (2004).

Google Scholar

[8] J. R. Blandino, R. G. Duncan, M. C. Nuckels, D. Cadogan: 46 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Austin, Texas, AIAA 2005, p.1807.

DOI: 10.2514/6.2005-1807

Google Scholar

[9] A. Tessler, H. R. Riggs, C. E. Freese, and G. M. Cook: Computer Methods in Applied Mech. Engrg., Vol. 155 (1998), p.15.

Google Scholar

[10] A. Tessler, H. R. Riggs and M. Dambach: Int. J. Numerical Methods in Engineering, Vol. 44 (1999) p.1527.

Google Scholar

[11] M. Froggatt and J. Moore: Applied Optics-OT Vol. 37 Issue 10 (1998), p.1741.

Google Scholar

[12] C. Quach and S. Vazquez: NASA TM-2005-0213521, (2005).

Google Scholar

[13] S. Vazquez, A. Tessler, C. Quach, E. Cooper, J. Parks, and J. Spangler: NASA/TM-2005213761, (2005).

Google Scholar

[14] C. Quach, S. Vazquez, A. Tessler, J. Moore, E. Cooper and J. Spangler: IAA Paper 20056357; AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA (2005).

DOI: 10.2514/6.2005-6357

Google Scholar

[15] M. Gherlone, M. Mattone, C. Surace, A. Tassotti, and A. Tessler: Proceedings of 6 th International Conference on Damage Assessment of Structures, Gdansk, Poland, (2005).

Google Scholar

[16] R. Raniolo: Optimization of Strain Sensor Locations using Evolutionary Algorithms (M.S. Thesis, Politecnico di Torino, Italy, 2006).

Google Scholar