Mechanical Properties of Aerogels : Brittle or Plastic Solids?

Article Preview

Abstract:

Different sets of silica aerogels (classical aerogels, partially dense aerogels, composite aerogels) have been studied in the objective to understand the mechanical behaviour of these extremely porous solids. The mechanical behaviour of xerogels and aerogels is generally described in terms of brittle and elastic materials, like glasses or ceramics. The main difference compared to silica glass is the order of magnitude of the elastic and rupture modulus which are 104 times lower. However, if this analogy is pertinent when gels are under a tension stress (bending test) they exhibit a more complicated response when the structure is submitted to a compressive stress. The network is linearly elastic under small strains, then exhibits yield followed by densification and plastic hardening. As a consequence of the plastic shrinkage it is possible to compact and stiffen the gel at room temperature. These opposite behaviours (brittle and plastic) are surprisingly related to the same kinds of gel features: pore volume silanol content and the pore size. Both elastic modulus and plastic shrinkage depend strongly on the volume fraction of pores and on the condensation reaction between silanols. On the mechanical point of view (rupture modulus and toughness), it is shown that pores size plays likely an important role. Pores can be considered as flaws in the terms of fracture mechanics and the flaw size, calculated from rupture strength and toughness is related to the pore size distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-44

Citation:

Online since:

October 2008

Export:

Price:

[1] M. Gronauer, J. Fricke: Acustica Vol. 59 (1986), p.169.

Google Scholar

[2] G.A. Nicolaon and S.J. Teichner: Bull. Soc. Chim. France Vol. 5 (1968) , p. (1906).

Google Scholar

[3] J. Fricke: J. Non-Cryst. Solids Vol. 147 -148 (1992), p.356.

Google Scholar

[4] W. Schaeffer and K.D. Keefer: Phys. Rev. Lett. Vol. 56 (1986), p.2199.

Google Scholar

[5] T. Woignier, J. Phalippou, J. Pelous, and E. Courtens : J. Non-Cryst. Solids Vol. 121 (1990), p.198.

DOI: 10.1016/0022-3093(90)90131-5

Google Scholar

[6] J.F. Brinker and G.W. Scherer: Sol-Gel Science, (Academic Press 1990).

Google Scholar

[7] T. Woignier, J. Phalippou, M. Prassas : J. Mater. Sci. Vol. 25 (1990), p.3117.

Google Scholar

[8] T. Calemczuk, A.M. de Goer, B. Salce, R. Maynard A. Zarembovitch: Europhys. Lett. Vol 3 (1987, ) p.1205.

Google Scholar

[9] J. Gross, G. Reichenauer, J. Fricke: J. Phys. Vol. D21, (1988), p.1447.

Google Scholar

[10] J.D. Lemay, T.M. Tillotson, H.W. Hrubesch, R.W. Pekala: Mater. Res. Soc. Symp. Proc. Vol. 180 (1990) , p.321.

Google Scholar

[11] T. Woignier, J. Phalippou : J. Non-Cryst. Solids Vol. 100 (1988), p.404.

Google Scholar

[12] G.W. Scherer: J. Non-Cryst. Solids Vol. 144 (1992) , p.210.

Google Scholar

[13] T. Woignier., J. Phalippou H., Hdach,G. Larnac, F. Pernot ,G. W Scherer : J. Non-Cryst. Solids Vol. 147-148 (1992); p.672.

DOI: 10.1016/s0022-3093(05)80697-0

Google Scholar

[14] J. Zarzycki: J. Non-Cryst. Solids: Vol. 100 (1988), p.255.

Google Scholar

[15] J.L. Chermant, F. Osterstock: J. Mater. Sci. Vol. 14 (1976), p. (1939).

Google Scholar

[16] A.G. Evans, G. Tappin: Proc. Br. Ceram. Soc. Vol. 23 (1972), p.275.

Google Scholar

[17] R. Pirard, S. Blacher, F. Brouers and J.P. Pirart: J. Mater. Res. Vol. 10 (1995), p.1.

Google Scholar

[18] L. Duffours, T. Woignier and J. Phalippou : J. Non-Cryst. Solids Vol. 186 (1995), p.321.

Google Scholar

[19] G.W. Scherer, D.M. Smith, X. Qiu and J. Anderson: J. Non-Cryst. Solids Vol. 186 (1995), p.316.

Google Scholar

[20] M. Toki, S. Miyashita, T. Takenchi, S. Kanabe, A. Kochi: J. Non-Cryst. Solids Vol. 100 (1988), p.479.

Google Scholar

[21] T. Woignier, J. Reynes, J. Phalippou, J.L. Dussossoy : J. Sol-Gel Sci. Tech . Vol. 19 (2000) p.833.

DOI: 10.1023/a:1008784822052

Google Scholar

[22] T. Woignier, J. Phalippou and M. Prassas : J. Mater. Sci. Vol. 25 (1990) , p.3118.

Google Scholar

[23] P. Etienne, J. Phalippou ,T. Woignier, A. Alaoui : J. Non-Cryst. Solids Vol. 188 (1995), p.19.

Google Scholar

[24] J.L. Chermant, F. Osterstock and G. Vadam: Verres Refract. Vol. 33(6), (1979), p.843.

Google Scholar

[25] W. Weibull: J. Appl. Mech. Vol. 843 (1951) , p.293.

Google Scholar

[26] D.P.H. Hasselman, F.F. Lange (Plenum Press, New York, 1978) p.125.

Google Scholar

[27] J.D. Sullivan, P.H. Lauzon: J. Mat. Sci. Let. Vol. 5 (1986), p.1245.

Google Scholar

[28] N. De la Rosa Fox, L. Esquivias : J. Sol-Gel Sci. Tech., Vol 26 (2003), p.651.

Google Scholar

[29] G.W. Scherrer, S.A. Pardenek, R.M. Swiate: J. Non-Cryst. SolidsVol. 107 (1988), p.14.

Google Scholar

[30] S.A. Pardenek, J.W. Fleming, L. Klein: Mat. Res. Soc. Symp. Proceeding Vol. 88 (1987), p.73.

Google Scholar

[31] M.J. Murthag, E.K. Graham, C.G. Pantano: J. Amer. Ceram. Soc. Vol. 69 (1986), p.775.

Google Scholar

[32] J. Dumas , J.F. Quinson,J. Serughetti : J. Non-Cryst. Solids Vol. 125 (1990), p.244.

Google Scholar

[33] M. Piñero de los Rios , N. De la Rosa Fox, L. Esquivias: J Eur. Ceram. Soc. Vol. 27 (2007) p.3311.

Google Scholar

[34] R.K. Iler ,. The chemistry of silica (Wiley N.Y. 1979).

Google Scholar

[35] C. Marlière , T Woignier, P Dieudonné, J. Primera, M. Lamy, J. Phalippou : J. Non-Cryst. Solids Vol. 285, (2001), p.175.

DOI: 10.1016/s0022-3093(01)00450-1

Google Scholar

[36] G.W. Scherer: J. Amer. Ceram Soc. Vol. 60 (1977), p.237.

Google Scholar

[37] T. Woignier, J. Phalippou, J.F. Quinson, M. Pauthe, M. Repellin-Lacroix , G.W. Scherer : J. Sol-Gel Sci. Techn. Vol. 2 (1994), p.277.

DOI: 10.1007/bf00486256

Google Scholar

[38] J. Phalippou, A. Ayral, T. Woignier, M. Pauthe, J.F. Quinson, A. Lechatelut : Europhys. Lett. Vol. 14 (1991), p.249.

DOI: 10.1209/0295-5075/14/3/011

Google Scholar

[39] I. Beurroies; Ph D Thesis (Montpellier) (1995).

Google Scholar

[40] T. Woignier, I Beurroies P Delord, V. Gibiat, R. SempéréJ. Phalippou : Eur. Phys. J. AP Vol. 6 (1999), p.2.

DOI: 10.1051/epjap:1999183

Google Scholar

[41] L. J Gibson , M.F. Ashby. Cellular solids structure and properties (Pergamon press Oxford UK 1988).

Google Scholar

[42] M. Adam, M. Delsanti, D. Durand : Macomolecules Vol. 18(11) (1985), p.2285.

Google Scholar

[43] M. Tokita, R. Niki,K. Hikichi :. J Phys. Soc. Japan Vol . 53(2) (1984), p.480.

Google Scholar

[44] A. Emmerling, J. Fricke : J. Sol-Gel Sci. and Tech. Vol. 8 (1997), p.781.

Google Scholar

[45] H. S Ma.,J.H. Prevost,R. Jullien G.W. Scherer : J. Non-Cryst. Solids Vol. 285 (2001), p.216.

Google Scholar

[46] S.J. Teichner, G.A. Vicarini, G.E.E. Gardes : Adv. Coll. Interface Sci. Vol. 5, (1976), p.245.

Google Scholar

[47] P. Tsou : J. Non-Cryst. Solids Vol. 186 (1995), p.415.

Google Scholar

[48] M. Pinero de los Rios, A Santos sanchez, N. De la Rosa Fox, L.M. Esquivias: Industr. Eng. Chem. Res.: Vol. 46 (2007), p.103.

Google Scholar

[49] J. Reynes, T. Woignier, and J. Phalippou : J. Non-Cryst. Solids Vol. 285 (2001), p.353.

Google Scholar

[50] T. Woignier, G.W. Scherer, A Hafidi Alaoui : J. Sol-Gel Sci. and Tech. Vol. 3 (1994), p.141.

Google Scholar