Influence of the Sample Size on the Results of B3B-Tests

Article Preview

Abstract:

The ball-on-three-balls (B3B)-test is a biaxial strength test for brittle materials. The results of B3B-tests are very stable against small geometrical inaccuracies of the specimens or the test support. In contrast to conventional bending tests there exists only a small influence of friction and edge defects are not relevant. These advantages, compared to beam tests, make the testing of mini-specimens with volumes of a few mm3 feasible. For this investigation silicon nitride specimens of different sizes were tested by use of the B3B-test. The maximum tensile stresses and the effective volumes and effective surfaces of the specimens were determined. The obtained results are compared directly and with the results of conventional 4-point-bending tests and are discussed in the framework of the Weibull-Theory. Additionally fracture surfaces of B3B-specimens and bending specimens were investigated fractographically to identify possible fracture origins.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-184

Citation:

Online since:

March 2009

Export:

Price:

[1] EN 843-1: Advanced technical ceramics, monolithic ceramics - Mechanical properties at room temperature, Part 1: Determination of flexural strength, (1995).

DOI: 10.3403/00483134u

Google Scholar

[2] D.J. Godfrey and S. John: Proc. 2nd International Conference of Ceramic Materials and Components for Engines, Verlag Deutsche Keramische Gesellschaft, Lübeck-Travemünde, (1986), p.657.

Google Scholar

[3] R. Morrell, N.J. McCormick, J. Bevan, M. Lodeiro and J. Margetson: Brit. Ceram. Trans. 98 (1999), p.234.

Google Scholar

[4] H. Fessler and D.C. Fricker: J. Am. Ceram. Soc. Vol. 67 (1984), p.582.

Google Scholar

[5] D. Munz and T. Fett: Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection (Springer-Verlag, Berlin 1998).

Google Scholar

[6] A. Börger: Eine Methode zur biaxialen Festigkeitsprüfung an Scheiben aus sprödem Werkstoff. Doctoral thesis. Institut für Struktur- und Funktionskeramik, Montanuniversität Leoben, Leoben, (2004).

Google Scholar

[7] A. Börger, P. Supancic and R. Danzer: J. Eur. Ceram. Soc. Vol. 22 (2002), p.1425.

Google Scholar

[8] A. Börger, P. Supancic and R. Danzer: J. Eur. Ceram. Soc. Vol. 24 (2004), p.2917.

Google Scholar

[9] W. Weibull: A statistical theory of strength of materials. Royal Swedish Institute for Engineering Research, Stockholm (1939), p.1.

Google Scholar

[10] W. Weibull: J. Appl. Mech. Vol. 18 (1951), p.293.

Google Scholar

[11] R. Danzer, P. Supancic, J. Pascual and T. Lube: Eng. Fract. Mech. Vol. 74 (2007), p.2919.

Google Scholar

[12] R. Danzer: J. Eur. Ceram. Soc. Vol. 26.

Google Scholar

[15] (2006), p.3043.

Google Scholar

[13] J. B. Wachtmann: Mechanical Properties of Ceramics (John Wiley & Sons, New York 1996).

Google Scholar

[14] R. Danzer: Mechanical Performance and lifetime Prediction. Concise Encyclopedia of Advanced Ceramic Materials, Pergamon Press. Oxford, U. K. (1991). p.286.

DOI: 10.1016/b978-0-08-034720-2.50081-2

Google Scholar

[15] A. Freudenthal: Fracture Mechanics of Ceramics (1968), p.591.

Google Scholar

[16] R. Danzer, T. Lube, P. Supancic, R. Damani, A. Börger and R. Binder, Austrian Patent AT 411714B. (2004).

Google Scholar

[17] R. Danzer, T. Lube, P. Supancic and R. Damani: Fracture of Ceramics, Adv. Eng. Mater. Vol. 10.

DOI: 10.1002/adem.200700347

Google Scholar

[4] (2008), p.275.

Google Scholar

[18] ISO 14704: Fine ceramics (advanced ceramics, advanced technical ceramics)-Test method for flexural strength of monolithic ceramics at room temperature, (2000).

DOI: 10.3403/30212260

Google Scholar

[19] R. Danzer, W. Harrer, P. Supancic, T. Lube, Z. Wang and A. Börger: J. Eur. Ceram. Soc. Vol. 27 [2-3] (2007), p.1481.

Google Scholar

[20] R. Danzer: Key Eng. Mat. Vol. 223 (2002), p.1.

Google Scholar