TiO2: From Nanotubes to Nanopores by Changing the Anodizing Voltage in Floride-Glycerol Electrolyte

Article Preview

Abstract:

In the present work a study on the TiO2 ordered structures was pursued using an electrolyte with a low water content (glycerol containing 4% H2O). The results led to the determination of two distinct states of TiO2 matrix structure: one of nanotubes for lower values of applied voltage and another of nanopores for higher values of applied voltage. These results are interpreted using three key investigation methods: potentiostatic method for TiO2 growth, atomic force microscopy and scanning electron microscopy for surface characterization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5-8

Citation:

Online since:

September 2009

Export:

Price:

[1] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Ancouturier, Surf. Interface Anal. 27 (1999), pp.629-637.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[2] G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, (2006) p.2011-(2075).

Google Scholar

[3] J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. Ed. 44, (2005) pp.7463-7465.

DOI: 10.1002/anie.200502781

Google Scholar

[4] S.P. Albu, A. Ghicov, J.M. Macak, P. Schumuki, Phys. Status Solidi 1, (2007) R-65-R-67.

Google Scholar

[5] K.S. Raja,M. Misra, K. Paramguru, Electrochim. Acta 51, (2005) pp.154-165.

Google Scholar

[6] X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Electrochem. Commun. 5, (2003) pp.408-411.

Google Scholar

[7] O. Shulga, J.R. Kirchhoff, Electrochem. Commun. 9, (2007) p.935.

Google Scholar

[8] M.Y. Liao, J.M. Lin, J.H. Wang, C.T. Yang, T.L. Chou, B.H. Mok, N.S. Chong, H.Y. Tang, Electrochem. Commun. 5, (2003) p.312.

Google Scholar

[9] E. Topoglidis, B.M. Discher, C.C. Moser, P.L. Dutton, J.R. Durrant, Chem. Bio. Chem. 4, (2003) p.1332.

Google Scholar

[10] J. Black, in: G. Hasting (Ed. ), Handbook of Biomaterial Properties, Chapman and Hall, London, 1998, p.179.

Google Scholar

[11] Man, C. Pirvu, I. Demetrescu, Rev. de Chimie, 59(6 ), (2008), p.615.

Google Scholar

[12] K.S. RajaT, M. Misra, K. Paramguru, Materials Letters 59, (2005) pp.2137-2141.

Google Scholar

[13] Gelson B. de Souza, Gabriel G. de Limba, Neide K. Kuromoto, Paulo Soares, Claudia E. B. Marino, Calos M. Lepienski, Key Eng. 396-398, (2009), pp.323-326.

Google Scholar

[14] Popat, K.C., Leoni, L., Grimes, C.A., Desai, T.A., 2007. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28, pp.3188-3197.

DOI: 10.1016/j.biomaterials.2007.03.020

Google Scholar

[15] Varghese, O.K., Yang, X., Kendig, J., Paulose, M., Zeng, K., Palmer, C., Ong, K.G., Grimes, C.A., 2006. Sensor Lett. 4, pp.120-128.

DOI: 10.1166/sl.2006.022

Google Scholar

[16] Liu, Y.B., Zhou, B.X., Xiong, B.T., Bai, J., Li, L.H., 2007. Chin. Sci. Bull. 52, p.1585.

Google Scholar

[17] Zhaoyue Liu, Batric Pesic, Krishnan S. Raja, Raghu R. Rangaraju, Mano Misra, International Journal of Hydrogen Energy 34, (2009) pp.3250-3257.

DOI: 10.1016/j.ijhydene.2009.02.044

Google Scholar

[18] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Current Opinion in Solid State and Materials Science, (2008).

DOI: 10.1016/j.cossms.2007.08.004

Google Scholar

[19] Parkhutik VP, Shershulsky VI. J Phys D 1992, 25: 1258.

Google Scholar