Behind the Quantum and Size Effects: Broken-Bond-Induced Local Strain and Skin-Depth Densified Quantum Trapping of Charge and Energy

Article Preview

Abstract:

Shrinking the size of a solid down to nanometer scale is indeed fascinating, which makes all the otherwise constant physical quantities to be tunable such as the Young’s modulus, dielectric constant, melting point, etc. The variation of size also generates novel properties that can hardly be seen in the bulk such as the conductor-insulator and nonmagnetic-magnetic transition of noble metals at the nanoscale. Although the physics of materials at the nanoscale has been extensively investigated, the laws governing the energetic and dynamic behavior of electrons at such a scale and their consequences on the tunable physical properties of nanostructures have not been well understood [C. Q. Sun, Prog Solid State Chem 35, 1-159 (2007); Prog Mater Sci 54, 179-307 (2009)]. The objective of the contribution is to update the recent progress in dealing with the coordination-resolved energetic and dynamic behavior of bonds in the low-dimensional systems with consideration of the joint effect of temperature and pressure. It is shown that the broken-bond-induced local strain and the associated charge and energy quantum trapping at the defect sites perturbs the atomic cohesive energy, electroaffinity, the Hamiltonian and the associated properties of entities ranging from point defects, surfaces, nanocavities and nanostructures. Application of the theories to observations has led to consistent understanding of the behavior of nanometer-sized materials and the interdependence of these entities as well as the means of determining the bond energy through the temperature-dependent measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-45

Citation:

Online since:

July 2010

Export:

Price:

[1] Sun CQ, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35, 1-159 (2007).

DOI: 10.1016/j.progsolidstchem.2006.03.001

Google Scholar

[2] Ouyang G, Wang CX, and Yang GW, Surface energy of nanostructural materials with negative curvature and related size effects, Chem. Rev. 109, 4221-4247 (2009).

DOI: 10.1021/cr900055f

Google Scholar

[3] Qin GG, Song HZ, Zhang BR, Lin J, Duan JQ, and Yao GQ, Experimental evidence for luminescence from silicon oxide layers in oxidized porous silicon, Phys. Rev. B 54, 2548-2555 (1996).

DOI: 10.1103/physrevb.54.2548

Google Scholar

[4] Koch F, Petrova-Koch V, Muschik T, Nikolov A and Gavrilenko V, in Micrystalline Semiconductors, Materials Science and Devices, Materials research Society, Pittsburgh, PA, 283, 197 (1993).

Google Scholar

[5] Wang X, Qu L, Zhang J, Peng X, and Xiao M, Surface-related emission in highly luminescent CdSe quantum dots, Nano Lett. 3, 1103-1106 (2003).

DOI: 10.1021/nl0342491

Google Scholar

[6] Prokes SM, Surface and optical properties of porous silicon, J. Mater. Res. 11, 305-319 (1996).

Google Scholar

[7] Iwayama TS, Hole DE, and Boyd IW, Mechanism of photoluminescence of Si nanocrystals in SiO2 fabricated by ion implantation, the role of interactions of nanocrystals and oxygen, J. Phys. Condens Matt. 11, 6595-6604 (1999).

DOI: 10.1088/0953-8984/11/34/312

Google Scholar

[8] Trwoga PF, Kenyon AJ, and Pitt CW, Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters, J. Appl. Phys. 83, 3789-94 (1998).

DOI: 10.1063/1.366608

Google Scholar

[9] Efros AL, and Efros AL, Interband absorption of light in a semiconductor sphere, Sov. Phys. Semicond. 16, 772-5 (1982).

Google Scholar

[10] Brus JE, On the development of bulk optical properties in small semiconductor crystallites, J. Lumin. 31, 381-4 (1984).

Google Scholar

[11] Kayanuma Y, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Phys. Rev. B 38, 9797-9805 (1988).

DOI: 10.1103/physrevb.38.9797

Google Scholar

[12] Ekimov AI, and Onushchenko AA, Quantum size effect in the optical spectra of semiconductor microcrystals, Sov. Phys. Semicon. 16, 775-778 (1982).

Google Scholar

[13] Glinka YD, Lin SH, Hwang LP, Chen YT, Tolk NH, Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials Phys. Rev. B 64, 085421 (2001).

DOI: 10.1103/physrevb.64.085421

Google Scholar

[14] Lindemann FA, The calculation of molecular natural frequencies, Z. Phys. 11, 609-612 (1910).

Google Scholar

[15] Born M, Thermodynamics of crystals and melting, J. Chem. Phys. 7, 591-603 (1939).

Google Scholar

[16] Buffat P, and Borel JP, Size effect on the melting temperature of gold particles, Phys. Rev. A 13, 2287-98 (1976).

DOI: 10.1103/physreva.13.2287

Google Scholar

[17] Pawlow P, The dependency of the melting point on the surface energy of a solid body. (Supplement. ) Z. Phys. Chem. Munich. 65, 545-8 (1909).

Google Scholar

[18] Vekhter B, and Berry RS, Phase coexistence in clusters, an experimental, isobar and an elementary model, J. Chem. Phys. 106, 6456-9 (1997).

DOI: 10.1063/1.473636

Google Scholar

[19] Reiss H, Mirabel P, and Whetten RL, Capillarity theory for the coexistence, of liquid and solid clusters, J. Phys. Chem. 92, 7241-6 (1988).

DOI: 10.1021/j100337a016

Google Scholar

[20] Sakai H, Surface-induced melting of small particles, Surf. Sci. 351, 285-91 (1996).

Google Scholar

[21] Ubbelohde AR, The molten State of Materials Wiley, New York, (1978).

Google Scholar

[22] Vanfleet RR, and Mochel JM, Thermodynamics of melting and freezing in small particles, Surf. Sci. 341, 40-50 (1995).

DOI: 10.1016/0039-6028(95)00728-8

Google Scholar

[23] Nanda KK, Sahu SN, and Behera SN, Liquid-drop model for the size-dependent melting of low-dimensional systems, Phys. Rev. A 66, 013208 (2002).

DOI: 10.1103/physreva.66.013208

Google Scholar

[24] Jiang Q, Liang LH, and Li JC, Thermodynamic superheating and relevant interface stability of low-dimensional metallic crystals, J. Phys. Condens. Matt. 13, 565-71 (2001).

DOI: 10.1088/0953-8984/13/4/303

Google Scholar

[25] Jiang Q, Liang LH, and Zhao M, Modelling of the melting temperature of nano-ice in MCM41 pores, J. Phys. Condens. Matt. 13, L397-401 (2001).

DOI: 10.1088/0953-8984/13/20/101

Google Scholar

[26] Jiang Q, Zhang Z, and Li JC, Superheating of nanocrystals embedded in matrix, Chem. Phys. Lett. 322, 549-552 (2000).

Google Scholar

[27] Vallee R, Wautelet M, Dauchot JP, and Hecq M, Size and segregation effects on the phase diagrams of nanoparticles of binary systems Nanotechnology 12, 68-74 (2001).

DOI: 10.1088/0957-4484/12/1/312

Google Scholar

[28] Defay R and Prigogine I, Surface Tension and adsorption. Wiley, New York, (1951).

Google Scholar

[29] Zhang M, Yu Efremov M, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, and Allen LH, Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys Rev B 62, 10548-57 (2000).

DOI: 10.1103/physrevb.62.10548

Google Scholar

[30] Peters KF, Cohen JB, and Chung YW, Melting of Pb nanocrystals. Phys. Rev. B 57, 13430-8 (1998).

Google Scholar

[31] Goldschmidt VM, Crystal structure and chemical correlation, Ber. Deut. Chem. Ges. 60, 126396 (1927).

Google Scholar

[32] Pauling L, Atomic radii and interatomic distances in metals, J. Am. Chem. Soc. 69, 542-553 (1947).

DOI: 10.1021/ja01195a024

Google Scholar

[33] Sun CQ. Thermo-mechanical behavior of low-dimensional systems: The local bond average approach. Prog. Mater Sci. 54, 179-307 (2009).

DOI: 10.1016/j.pmatsci.2008.08.001

Google Scholar

[34] Sun CQ, Sun Y, Ni Y, Zhang X, Pan J, Wang X-H, Zhou J, Li L-T, Zheng W, Yu S et al: Coulomb Repulsion at the Nanometer-Sized Contact: A Force Driving Superhydrophobicity, Superfluidity, Superlubricity, and Supersolidity, J. Phys. Chem. C 113, 20009-20019 (2009).

DOI: 10.1021/jp907726b

Google Scholar

[35] Sun CQ, Surface and nanosolid core-level shift: impact of atomic coordination number imperfection, Phys. Rev. B 69, 045105 (2004).

DOI: 10.1103/physrevb.69.045105

Google Scholar

[36] Sun CQ, Gong HQ, and Hing P, Behind the quantum confinement and surface passivation of nanoclusters, Surf. Rev. Lett. 6, L171-176 (1999).

DOI: 10.1142/s0218625x99000196

Google Scholar

[37] Rao CNR, Kulkarni GU, Thomas PJ, and Edwards PP, Size-dependent chemistry, Properties of nanocrystals, Chem. Euro. J. 8, 28-35 (2002).

Google Scholar

[38] Aiyer HN, Vijayakrishnan V, Subbanna GN, and Rao CNR, Investigations of Pd clusters by the combined use of HREM, STM, high-energy spectroscopies and tunneling conductance measurements, Surf. Sci. 313, 392-398 (1994).

DOI: 10.1016/0039-6028(94)90059-0

Google Scholar

[39] Sun CQ, Chen TP, Tay BK, Li S, Huang H, Zhang YB, Pan LK, Lau SP, and Sun XW, An extended quantum confinement, theory, surface-coordination imperfection modifies the entire band structure of a nanosolid, J. Phys. D 34, 3470-3479 (2001).

DOI: 10.1088/0022-3727/34/24/308

Google Scholar

[40] Street RA, Hydrogenated amorphous silicon Cambridge University Press, Cambridge, (1991).

Google Scholar

[41] Sinnott MJ, The solid state for engineers, Wiley and Sons, New York, (1963).

Google Scholar

[42] Shpyrko OG, Grigoriev AY, Steimer C, Pershan PS, Lin B, Meron M, Graber T, Gerbhardt J, Ocko B, and Deutsch M, Phys. Rev. B 70, 224206 (2004).

DOI: 10.1103/physrevb.73.019901

Google Scholar

[43] Mahnke H. -E., Haas H., Holub-Krappe E., Koteski V., Novakovic N., Fochuk P. and Panchuk O, Lattice distortion around impurity atoms as dopants in CdTe, Thin Solid Films 480-481, 279282 (2005).

DOI: 10.1016/j.tsf.2004.11.059

Google Scholar

[44] Feibelman PJ, Relaxation of hcp(0001) surfaces, A chemical view, Phys. Rev. B53, 1374013746 (1996).

Google Scholar

[45] Sun CQ, Tay BK, Zeng XT, Li S, Chen TP, Zhou J, Bai HL, and Jiang EY, Bond-order-lengthstrength (BOLS) correlation mechanism for the shape and size dependency of a nanosolid, J. Phys. Condens. Matt. 14, 7781-95 (2002).

DOI: 10.1088/0953-8984/14/34/301

Google Scholar

[46] Sun CQ, Bai HL, Tay BK, Li S, and Jiang EY, Dimension, strength, and chemical and thermal stability of a single C-C bond in carbon nanotubes, J. Phys. Chem. B 107, 7544-7546 (2003).

DOI: 10.1021/jp035070h

Google Scholar

[47] Chen TP, Liu Y, and Sun CQ, et al, Core-level shift of Si nanocrystals embedded in SiO2 matrix, J. Phys. Chem. B 108, 16609-16611 (2004).

Google Scholar

[48] Sun CQ, Li CM, Bai HL, and Jiang EY, Melting point oscilation of a solid over the whole range of sizes, Nanotechnology 16, 1290-3 (2005).

DOI: 10.1088/0957-4484/16/8/051

Google Scholar

[49] Bahn SR, and Jacobsen KW, Chain Formation of Metal Atoms, Phys. Rev. Lett. 87, 266101 (2001).

Google Scholar

[50] Sun CQ, Wang Y, Tay BK, Li S, Huang H, Zhang YB, Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom, J. Phys. Chem. B 106, 10701-10705 (2002).

DOI: 10.1021/jp025868l

Google Scholar

[51] Kocks UF, Argon AS, and Ashby MF, Thermodynamics and kinetics of slip, Prog. Mater. Sci. 19, 1-281 (1975).

Google Scholar

[52] Sun CQ, Li S, and Li CM, Impact of bond-order loss on surface and nanosolid mechanics, J. Phys. Chem. B 109, 415-23 (2005).

DOI: 10.1021/jp045894e

Google Scholar

[53] Hensel J. C., Tung R. T., Poate J. M., and Unterwald F. C. Specular Boundary Scattering and Electrical Transport in Single-Crystal Thin Films of CoSi2, Phys. Rev. Lett. 54, 1840-3 (1985).

DOI: 10.1103/physrevlett.54.1840

Google Scholar

[54] Tesanovic Z, and Jaric MV, Quantum Transport and Surface Scattering, Phys. Rev. Lett. 57, 2760-2763 (1986).

Google Scholar

[55] Liu XJ, Li JW, Zhou ZF, Yang LW, Ma ZS, Xie GF, Pan Y, Sun CQ, Photoluminescence and photoabsorption blueshift of nanostructured ZnO: Skin-depth quantum trapping and electronphonon coupling, Appl. Phys. Lett. 94, 131902 (2009).

DOI: 10.1063/1.3184566

Google Scholar

[56] Zhong WH, Sun C. Q, Li S, Bai HL, Jiang EY, Impact of bond order loss on surface and nanosolid magnetism, Acta Mater. 53 (2005).

DOI: 10.1016/j.actamat.2005.03.025

Google Scholar

[57] Sun CQ, Zhong WH, Li S, Tay BK, Bai HL, and Jiang EY, Coordination imperfection suppressed phase stability of ferromagnetic, ferroelectric, and superconductive nanosolids. J. Phys. Chem. B 108, 1080-1084 (2004).

DOI: 10.1021/jp0372946

Google Scholar

[58] Hu Y, Tan OK, Pan JS, and Yao X, A new form of nano-sized SrTiO3 material for near human body temperature oxygen sensing applications, J. Phys. Chem. B 108, 11214-11218 (2004).

DOI: 10.1021/jp048973z

Google Scholar

[59] Zhou J, Sun CQ, Pita K, Lam YL, Zhou Y, Ng SL, Kam CH, Li LT, and Gui ZL, Thermally tuning of the photonic band-gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3, Appl. Phys. Lett. 78, 661-663 (2001).

DOI: 10.1063/1.1344574

Google Scholar

[60] Li B, Zhou J, Hao LF, Hu W, Zong RL, Cai MM, Fu M, Gui ZL, Li LT, and Li Q, Photonic band gap in (Pb, La)(Zr, Ti)O3 inverse opals, Appl. Phys. Lett. 82, 3617-3619 (2003).

DOI: 10.1063/1.1578691

Google Scholar

[61] Li JW, Liu XJ, Yang LW, Zhou ZF, Xie GF, Pan Y, Wang XH, Zhou J, Li LT, Pan LK, Sun Z, and Chang QS, Photoluminescence and photoabsorption blueshift of nanostructured ZnO: Skindepth quantum trapping and electron-phonon coupling, Appl. Phys. Lett. 95, 031906 (2009).

DOI: 10.1063/1.3184566

Google Scholar

[62] Sanders GD, and Chang YC, Theory of optical properties of quantum wires in porous silicon, Phys. Rev. B45, 9202-9213 (1992).

DOI: 10.1103/physrevb.45.9202

Google Scholar

[63] Pan LK, and Sun CQ, Coordination imperfection enhanced electron-phonon interaction in nanosolid silicon, J. Appl. Phys. 95, 3819-3821 (2004).

DOI: 10.1063/1.1646469

Google Scholar

[64] Ouyang G, Sun CQ, and Zhu WG, Atomistic origin and pressure dependence of band gap variation in semiconductor nanocrystals. J. Chem. Phys. C 113, 9516-9519 (2009).

DOI: 10.1021/jp9035309

Google Scholar

[65] Tománek D, Mukherjee S, and Bennemann KH, Simple theory for the electronic and atomic structure of small clusters, Phys. Rev. B 28, 665-73 (1983).

DOI: 10.1103/physrevb.28.665

Google Scholar

[66] Sun CQ, Li C, and Li S, Breaking limit of atomic distance in an impurity-free monatomic chain, Phys. Rev. B 69, 245402 (2004).

DOI: 10.1103/physrevb.69.245402

Google Scholar

[67] Sun CQ, Pan LK, and Li CM, Elucidating Si-Si dimer vibration from the size-dependent Raman shift of nanosolid Si, J. Phys. Chem. B108, L3404-3406 (2004).

DOI: 10.1021/jp037891s

Google Scholar

[68] Zheng WT, Sun CQ, and Tay BK, Modulating the work function of carbon by O and N addition and nanotip formation, Solid State Commun. 128, 381-384 (2003).

DOI: 10.1016/j.ssc.2003.08.023

Google Scholar

[69] Poa CHP, Smith RC, Silva SRP, and Sun CQ, Influence of mechanical stress on electron field emission of multi-walled carbon nanotube-polymer composites, J. Vac. Sci. Technol. B 23, 698701 (2005).

DOI: 10.1116/1.1868692

Google Scholar

[70] Pan LK, and Sun CQ, Dielectric suppression of nanosolid Si, Nanotechnology 15, 1802-1806 (2004).

Google Scholar

[71] Liu JP, Zaumseil P, Bugiel E, and Osten HJ, Epitaxial growth of Pr2O3 on Si(111) and the observation of a hexagonal tocubic phase transition during postgrowth N2 annealing, Appl. Phys. Lett. 79, 671- 673 (2001).

DOI: 10.1063/1.1389509

Google Scholar

[72] Kim HK, Huh SH, Park JW, Jeong JW, and Lee GH, The cluster size dependence of thermal stabilities of both molybdenum and tungsten nanoclusters, Chem. Phys. Lett. 354, 165-72 (2002).

DOI: 10.1016/s0009-2614(02)00146-x

Google Scholar

[73] Höfler H J, and Averback RS, Grain-growth in nanocrystalline TiO2 and its relation to vickes hardness and fracture-toughness. Scripta Metall. Mater. 24, 2401 (1990).

DOI: 10.1016/0956-716x(90)90101-l

Google Scholar

[74] Peppiatt SJ, Melting of small particles. 2. Bismuth , Proc. Soc. London Ser A 345, 401 (1975).

Google Scholar

[75] Itoigawa H, Kamiyama T, and Nakamura Y, Bi precipitates in Na2O-B2O3 glasses, J. NonCryst Solids 210, 95-100 (1997).

DOI: 10.1016/s0022-3093(96)00580-7

Google Scholar

[76] Kellermann G, and Craievich AF, Structure and melting of Bi nanocrystals embedded in a B2O3-Na2O glass, Phys. Rev. B 65, 134204 (2002).

Google Scholar

[77] Allen GL, Gile WW, and Jesser WA, Melting temperature of microcrystals embedded in a matrix, Acta Metall. 28, 1695-1701 (1980).

DOI: 10.1016/0001-6160(80)90022-x

Google Scholar

[78] Skripov VP, P KoverdaV, and Skokov VN, Size effect on melting of small particles, Phys. Status. Solidi A 66, 109-118 (1981).

DOI: 10.1002/pssa.2210660111

Google Scholar

[79] Goldstein N, Echer CM, and Alivistos AP, Melting in semiconductor nanocrystals, Science 256, 1425-1427 (1992).

DOI: 10.1126/science.256.5062.1425

Google Scholar

[80] Sadeh B, Doi M, Shimizu T, and Matsui MJ, Dependence of the Curie temperature on the diameter of Fe3O4 ultra-fine particles, J. Magn. Soc. Jpn. 24, 511-514 (2000).

Google Scholar

[81] Zhong WL, Jiang B, Zhang PL, Ma JM, Cheng HM, Yang ZH, and Li LX, Phase transition in PbTiO3 ultrafine particles of different sizes, J. Phys. Condens. Matt. 5, 2619-2624 (1993).

DOI: 10.1088/0953-8984/5/16/018

Google Scholar

[82] Yu T, Shen ZX, Toh WS, Xue JM, and Wang JJ, Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles, J. Appl. Phys. 94, 618-620 (2003).

DOI: 10.1063/1.1583146

Google Scholar

[83] Uchina K, Sadanaga Y, and Hirose T, J. Am. Ceram. Soc. 72, 1555 (1999).

Google Scholar

[84] Chattopadhyay S, Ayyub P, Palkar VR, Gurjar AV, Wankar RM, and Multani M, Finite-size effects in antiferroelectric PbZrO3 nanoparticles J. Phys. Condens. Matt. 9, 8135-8145 (1997).

DOI: 10.1088/0953-8984/9/38/017

Google Scholar

[85] Ma DDD, Lee CS, Au FCK, Tong SY, and Lee ST, Small-diameter silicon nanowire surfaces, Science 299, 1874-1877 (2003).

DOI: 10.1126/science.1080313

Google Scholar

[86] Campbell IH, and Fauchet PM, Eeffects of microcrystal size and shape on the phonon Raman spectra of of crystalline semiconductors, Solid State Commun. 58, 739-41 (1986).

DOI: 10.1016/0038-1098(86)90513-2

Google Scholar

[87] Pan LK, Sun CQ, Tay BK, Chen TP, and Li S, Photoluminescence of Si nanosolids near the lower end of the size limit, J. Phys. Chem. B 106, 11725-11727 (2002).

DOI: 10.1021/jp0266805

Google Scholar

[88] Zhang P, and Sham TK, X-Ray Studies of the Structure and Electronic Behavior of Alkanethiolate-Capped Gold Nanoparticles, The Interplay of Size and Surface Effects, Phys. Rev. Lett. 90, 245502 (2003).

DOI: 10.1103/physrevlett.90.245502

Google Scholar

[89] Ohgi T, and Fujita D, Consistent size dependency of core-level binding energy shifts and single-electron tunneling effects in supported gold nanoclusters, Phys. Rev. B 66, 115410 (2002).

DOI: 10.1103/physrevb.66.115410

Google Scholar

[90] Howard A, Clark DNS, Mitchell CEJ, Egdell RG, and Dhanak VR, Initial and final state effects in photoemission from Au nanoclusters on TiO2(110), Surf. Sci. 518, 210-224 (2002).

DOI: 10.1016/s0039-6028(02)02124-6

Google Scholar

[91] Salmon M, Ferrer S, Jazzar M, and Somojai GA, Core- and valence-band energy-level shifts in small two-dimensional islands of gold deposited on Pt(100): The effect of step-edge, surface, and bulk atoms, Phys. Rev. B 28, 1158-60 (1983).

DOI: 10.1103/physrevb.28.1158

Google Scholar

[92] Gotić M, Ivanda M, Sekulić A, Musić S, Popović S, Turković A, and Furić K, Microstructure of nanosized TiO2 obtained by sol-gel synthesis, Mater. Lett. 28, 225 (1996).

DOI: 10.1016/0167-577x(96)00061-4

Google Scholar

[93] Dieguez A, Romano-Rodrýguez A, Vila A, and Morante JR, The complete Raman spectrum of nanometric SnO2 particles, J. Appl. Phys. 90, 1550-1557 (2001).

DOI: 10.1063/1.1385573

Google Scholar

[94] Spanier JE, Robinson RD, Zhang F, Chan SW, and Herman IP, Size-dependent properties of CeO2 nanoparticles as studied by Raman scattering, Phys. Rev. B 64, 245407 (2001).

Google Scholar

[95] Shek CH, Lin GM, and Lai JKL, Effect of oxygen deficiency on the Raman spectra and hyperfine interactions of nanometer SnO2, Nanosructured Mater. 11, 831-835 (1999).

DOI: 10.1016/s0965-9773(99)00373-6

Google Scholar

[96] Seong MJ, Micic OI, Nozik AJ, Mascarenhas A, and Cheong HM, Size-dependent Raman study of InP quantum dots, Appl. Phys. Lett. 82, 185-187 (2003).

DOI: 10.1063/1.1535272

Google Scholar

[97] Lannoo M, Delerue C, and Allan G, Screening in Semiconductor Nanocrystallites and Its Consequences for Porous Silicon, Phys. Rev. Lett. 74, 3415-8 (1995).

DOI: 10.1103/physrevlett.74.3415

Google Scholar

[98] Wang LW, and Zunger A, Dielectric Constants of Silicon Quantum Dots, Phys. Rev. Lett. 73, 1039-1042 (1994).

DOI: 10.1103/physrevlett.73.1039

Google Scholar

[99] Pan LK, Huang HT, and Sun CQ, Dielectric transition and relaxation of nanosolid silicon, J. Appl. Phys. 94, 2695-700 (2003).

Google Scholar

[100] Gu MX, Zhou YC, and Sun CQ, Local bond average for the thermally induced lattice expansion. J. Phys. Chem. B 112, 7992-7995 (2008).

DOI: 10.1021/jp077598i

Google Scholar

[101] Bruls RJ, Hintzen HT, With G de, Metselaar R, and van Miltenburg JC, The temperature dependence of the Gruneisen parameters of MgSiN2, AlN and beta-Si3N4. J. Phys. Chem. Solids 62, 783-792 (2001).

DOI: 10.1016/s0022-3697(00)00258-4

Google Scholar

[102] Sheleg, AU, Savastenko, WA. Izv. Akad. Nauk BSSR, Ser. Fiz. Mat. Nauk, 3, 126 (1976).

Google Scholar

[103] Reeber RR, and Wang K, Lattice parameters and thermal expansion of GaN, J. Mater. Res. 15, 40-44 (2000).

DOI: 10.1557/jmr.2000.0011

Google Scholar

[104] Chen ZW, Sun CQ, Zhou YC, and Gang OY., Size dependence of the pressure-induced phase transition in nanocrystals, J. Chem. Phys. C 112, 2423-2427 (2008).

DOI: 10.1021/jp077719e

Google Scholar

[105] Tolbert SH, and Alivisatos AP, Size dependence of a first-order solid-solid phase-transition Science, 265, 373-376 (1994).

DOI: 10.1126/science.265.5170.373

Google Scholar

[106] Ouyang G, Sun CQ, and Zhu WG, Pressure-stiffened Raman phonons in group III nitrides: A local bond average approach, J. Phys. Chem. B 112, 5027-5031 (2008).

DOI: 10.1021/jp711530q

Google Scholar

[107] Ueno M, Onodera A, Shimomura O, and Takemura K, X-ray-observation of the structural phase-transition of Aluminium nitride under high-pressure, Phys. Rev. B 45, 10123-10126 (1992).

DOI: 10.1103/physrevb.45.10123

Google Scholar

[108] Li JB, Li GH, Xia JB, Zhang JB, Lin Y, and Xiao, XR, Optical spectra of CdSe nanocrystals under hydrostatic pressure, J. Phys.: Condens. Matter. 13, 2033 (2001).

DOI: 10.1088/0953-8984/13/9/327

Google Scholar

[109] Zhao Z, Zeng J, Ding Z J, Wang XP, Hou JG, Zhang ZM, High pressure photoluminescence of CdZnSe quantum dots: Alloying effect, J. Appl. Phys. 102, 053509 (2007).

DOI: 10.1063/1.2777135

Google Scholar

[110] Gu MX, Pan LK, Tay BK, and Sun CQ, Atomistic origin and temperature dependence of Raman optical redshift in nanostructures: a broken bond rule, J. Raman Spectroscopy 38, 780788 (2007).

DOI: 10.1002/jrs.1683

Google Scholar

[111] Menendez J, and Cardona M, Temperature dependence of the 1st -order Raman scattering by phonons in Si, Ge, and AsN-anhamonic effects, Phys. Rev. B 29, 2051-2059 (1984).

Google Scholar

[112] Balkanski M., R.F. Wallis, and E. Haro, Anhamonic effects in light-scattering due to optical phonons in silicon, Phys. Rev. B 28, 1928-1934 (1983).

DOI: 10.1103/physrevb.28.1928

Google Scholar

[113] Hart TR, Aggarwal RL, and Lax B, Temperature dependence of Raman scattering in Silicon, Phys. Rev. B 1, 638 (1970).

DOI: 10.1103/physrevb.1.638

Google Scholar

[114] Gysin U, Rast S, Ruff P, Meyer E, Lee DW, Vettiger P, and Gerber C, Temperature dependence of the force sensitivity of silicon cantilevers, Phys. Rev. B 69, 045403 (2004).

DOI: 10.1103/physrevb.69.045403

Google Scholar

[115] Kittel C, Introduction to Solid State Physics, Wiley, Hoboken, NJ, (2005).

Google Scholar