Effect of Post-Deposition Annealing Treatment on the Structural, Optical and Gas Sensing Properties of TiO2 Thin Films

Article Preview

Abstract:

One of the potential applications of TiO2 is its use in gas sensor technology. The aim of this work was to study the gas sensing properties of TiO2 thin films in combination with the effect of post-deposition annealing treatment. Titanium dioxide thin films with thickness 100 nm were prepared by the reactive dc magnetron sputtering. The thin films were deposited on sapphire substrate from a titanium target in an oxygen atmosphere. The samples were then post-annealed in air in the temperature range 600 °C 1000 °C. Crystal structure, surface topography and absorption edge of the thin films have been studied by X-ray Diffraction technique, Atomic Force Microscopy and UV-VIS Spectroscopy. It was found that the phase gradually changed from anatase to rutile, the grain size and roughness tended to increase with increasing post-annealing temperature. The effect of these factors on gas sensing properties was discussed. For electrical measurements comb-like Pt electrodes were prepared by standard photolithography and the films were exposed to different concentrations of H2 gas up to 10000 ppm in synthetic air at various operating temperatures from 200 °C to 350 °C.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

467-474

Citation:

Online since:

May 2012

Export:

Price:

[1] http: /www. generalmonitors. com/downloads/white_papers/hydrogen_gas_detection. pdf.

Google Scholar

[2] H.M. HU, J.C. YU: Chinese J. Struct. Chem. Vol. 29 (2010), p.410.

Google Scholar

[3] O.K. Varghese, D. Gong, M. Paulose, K. G. Ong, C. A. Grimes: Hydrogen sensing using titania nanotubes: Sensors and Actuators B Vol. 93 (2003), p.338.

DOI: 10.1016/s0925-4005(03)00222-3

Google Scholar

[4] H.M. Lin, T.Y. Hsu, C.Y. Tung, and C.M. Hsu: Hydrogen sulfide detection by nanocrystal pt doped TiO2-based gas sensors: Nanostructure Materials Vol. 6 (1995), p.1001.

DOI: 10.1016/0965-9773(95)00231-6

Google Scholar

[5] Y.K. Jun, H.S. Kim, J.H. Lee, and S.H. Hong: CO sensing performance in micro-arc oxidized TiO2 films for air quality control: Sensors and Actuators B Vol. 120 (2006), p.69.

DOI: 10.1016/j.snb.2006.01.045

Google Scholar

[6] N.V. Hieu, N.V. Duy, P.T. Huy, N. D. Chien: Inclusion of SWCNTs in Nb/Pt co-doped TiO2 thin-film sensor for ethanol vapor detection: Physica E Vol. 40 (2008), p.2950.

DOI: 10.1016/j.physe.2008.02.018

Google Scholar

[7] I. Alessandri, E. Comini, E. Bontempi, G. Faglia, L. E. Depero, and G. Sberveglieri: Cr-inserted TiO2 thin films for chemical gas sensors: Sensors and Actuators B Vol. 128 (2007), p.312.

DOI: 10.1016/j.snb.2007.06.020

Google Scholar

[8] S. Rani, S.C. Roy, M. Paulose, O.K. Varghese, G.K. Mor, S. Kim, S. Yoriya, T.J. LaTempa and C.A. Grimes: Synthesis and applications of electrochemically self-assembled titania nanotube arrays : Physical Chemistry Chemical Physics Vol. 12 (2010).

DOI: 10.1039/b924125f

Google Scholar

[9] G. W. Ho: Gas Sensor with Nanostructured OxideSemiconductor Materials: Sci. Adv. Mater. Vol. 3 (2011), pp.150-168.

Google Scholar

[10] A.A. Haidry, P. Schlosser, P. Durina, M. Mikula, M. Tomasek, T. Plecenik, T. Roch, A. Pidik, M. Stefecka, J. Noskovic, M. Zahoran, P. Kus, A. Plecenik: Hydrogen gas sensors based on nanocrystalline TiO2 thin films: Cent. Eur. J. Phys. Vol. 9 (2011).

DOI: 10.2478/s11534-011-0042-3

Google Scholar

[11] Y. Bessekhouad, D. Robert, J.V. Weberet: Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions: Journal of Photochemistry and Photobiology A: Chemistry Vol. 157 (2003), p.49.

DOI: 10.1016/s1010-6030(03)00077-7

Google Scholar

[12] L. S. Hsu and D. Luca: Ssubstrate and annealing effects on the pulsed-laser deposited TiO2 thin films: Journal of Optoelectronics and Adv. Mat. Vol. 5 (2003) 844.

Google Scholar

[13] S. Sankar and K.G. Gopchandran: Effect of annealing on the structural, electrical and optical properties of nanostructured TiO2 thin films: Cryst. Res. Technol. Vol. 44 (2009), p.991.

DOI: 10.1002/crat.200900073

Google Scholar

[14] D. Mardare and G. I Rusu: The inf luence of heat treatment on the optical properties of titanium oxide thin films: Materials Letters Vol. 56 (2002), p.213–214.

DOI: 10.1016/s0167-577x(02)00441-x

Google Scholar

[15] K. Zakrzewska: Dissertations Monographs 115 (Krakow, 2003), p.34.

Google Scholar

[16] S. Valencia, J. Miguel Marín and G. Restrepo: Study of the bandgap of synthesized Titanium dioxide nanoparticules using the Sol-Gel method and a hydrothermal treatment: The Open Materials Science Journal Vol. 4 (2010), p.9.

DOI: 10.2174/1874088x01004010009

Google Scholar

[17] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao: Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010 Vol. 10(3), p. (2090).

DOI: 10.3390/s100302088

Google Scholar

[18] B. Huber, A. Brodyanski, M. Scheib, A. Orendorz, C. Ziegler, H. Gnaser: Nanocrystalline anatase TiO2 thin films: preparation and crystalite size-dependent properties: Thin Solid Films 472 (2005), p.120.

DOI: 10.1016/j.tsf.2004.06.120

Google Scholar

[19] L.R. Sheppard, M.K. Nowotny, T. Bak, J. Nowotny: Effect of Cooling on Electrical Conductivity of Titanium dioxide: Phys. Stat. Sol. (b) Vol. 245 (2008), p.1816.

DOI: 10.1002/pssb.200879536

Google Scholar

[20] R. Asmatulu, K. Annamalai, D.C. Bell, S. Ramanathan, and M. J. Aziz: Synthesis and variable temperature electrical conductivity studies of highly ordered TiO2 nanotubes: Journal of Materials Science Vol. 44(2009), p.4616.

DOI: 10.1007/s10853-009-3703-5

Google Scholar

[21] S.H. Song, X. Wang and P. Xiao: Effect of microstructural features on the electrical properties of TiO2: Mater. Sci. Eng. B Vol. 94 (2002), p.47.

Google Scholar

[22] H.P. Deshmukh, P.S. Shinde and P.S. Patil: Structural, optical and electrical characterization of spray-deposited TiO2 thin films: Mat. Sci. & Engg. B Vol. 130 (2006), p.220–227.

DOI: 10.1016/j.mseb.2006.03.016

Google Scholar