An Energy Storage Material Fabricated by Coating Ba0.40Sr0.60TiO3 Nano Particles with Aluminum Oxide Doped with Zinc Oxide Shell

Article Preview

Abstract:

For energy storage devices such as capacitances, pulsed power applications and other any electronic systems, high permittivity and high breakdown strength (BDS) are necessary for dielectric materials used in high energy storage capacitors. Ba0.4Sr0.6TiO3 nano-powders were directly synthesized from solution and then wrapped by a thin surrounding shell with composition of zinc oxides dopants in aluminum oxides. This core-shell structure was characterized by a conjunction of XRD, and TEM analysis. The core-shell nanoparticles were pressed into pellets with 10 mm diameter and then sintered at different temperature in air. The specimen coated with 2.0wt% compounds of aluminum oxides doped with zinc oxides showed the maximum breakdown strength of 475kV/cm and the energy storage density of 4.7J/cm3 while the tanδ was only 0.002, whereas the uncoated Ba0.4Sr0.6TiO3 was only 86.9kV/cm, 0.23J/cm3 and 0.005, respectively. And the energy storage density and the BDS decreased when the shell content was more than 2.0wt%.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1635-1640

Citation:

Online since:

June 2012

Export:

Price:

[1] D.S. Korn and H.D. Wu, A comprehensive review of microwave system requirements on thin-film ferroelectrics, Int. Ferroelectr., 24 (1999) 215–237

DOI: 10.1080/10584589908215593

Google Scholar

[2] S.M. Rhim, S. Hong, H. Bak, O.K Kim, Effects of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3Ceramics, J Am Ceram Soc, 83 (2000) 1145–1148.

Google Scholar

[3] L. Davis, L. G. Rubin, Some Dielectric Properties of Barium-Strontium. Titanate Ceramics at 300 Megacycles, J. Appl. Phys, 24 (1953) 1194-1197

DOI: 10.1063/1.1721469

Google Scholar

[4] E. P. Gorzkowski, M. J. Pan, B. Bender, and C. C. M. Wu, Glass–Ceramics of Barium Strontium Titanate for High Energy Density Capacitors, J. Electroceram, 18 (2007)269 -276.

DOI: 10.1007/s10832-007-9127-1

Google Scholar

[5] L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique, Progress in Materials Science, 5(2008) 207-322

DOI: 10.1016/j.pmatsci.2007.05.001

Google Scholar

[6] J.J Huang, Y. Zhang, T.Ma, H.T Li, L.W Zhang, Correlation between dielectric breakdown strength and interface polarization in barium strontium titanate glass ceramics, J. Applied physics letters 96(2010)042902

DOI: 10.1063/1.3293456

Google Scholar

[7] G. X. Dong, S.M, J.Du, J.D Cui, Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics, Ceramics International, 35(2009)2069-2075

DOI: 10.1016/j.ceramint.2008.11.003

Google Scholar

[8] Q.M Zhang, L.Wang, J.Luo, Q.Tang, J.Du, Ba0.4Sr0.6TiO3/MgO Composites with Enhanced Energy Storage Density and Low Dielectric Loss for Solid-State Pulse-Forming Line Int.J.Appl.Ceram.Technol, 7 (2010) E124-E128

DOI: 10.1111/j.1744-7402.2009.02456.x

Google Scholar

[9] K. B. Chong, L. B. Kong, Linfeng Chen: Journal of Applied Physics, 95(2004)1416

Google Scholar

[10] Q.M Zhang, L.Wang, J.Luo, Q. Tang, J. Du, Improved Energy Storage Density in Barium Strontium Titanate by Addition of BaO–SiO2–B2O3 Glass, J.Am.Ceram.Soc, 92(2009) 1871-1873

DOI: 10.1111/j.1551-2916.2009.03109.x

Google Scholar

[11] L .H. Hench and J. K. West, The sol-gel process, Chem. Rev. 90(1990) 33-37

Google Scholar

[12] H.P. Baldus, M. Jansen, Moderne Hochleistungskeramiken-amorphe anorganische Netzwerke aus molekularen Vorläufern, Angew. Chem. 109 (1997)338-354

DOI: 10.1002/ange.19971090405

Google Scholar

[13] S. Wada, H. Chikamori, T. Noma and T. Suzuki, Hydrothermal synthesis of barium titanate crystallites using new stable titanium chelated complex in aqueous solution, J.Mater.Sci.Lett. 19(2000)245-247

Google Scholar

[14] B.Jaffe, W.R. Cook, J.H. Jaffe, Piezoelectric Ceramics, Academic Press, London, New York, 197, pp.185-212

Google Scholar

[15] K. Watanabe, H. Ohsato, H. Kishi, Y. Okino, N. Kohzu, Y. Iguchi, T. Okuda, Solubility of La-Mg and La-Al in BaTiO3,Solid State Ionics, 108(1998)129-135

DOI: 10.1016/s0167-2738(98)00030-7

Google Scholar

[16] R.D.SHANNON, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chaleogenides, Acta Cryst. A32 (1976) 751

DOI: 10.1107/s0567739476001551

Google Scholar

[17] H.Y. Tian, J.Q.Qi, Y.Wang, J.Wang, H.L.W Chan and C.L. Choy, Core-shell structure of nanoscaled Ba0.5Sr0.5TiO3 self-wrapped by MgO derived from a direct solution synthesis at room temperature, Nanotechnology 16(2005)47–52

DOI: 10.1088/0957-4484/16/1/011

Google Scholar

[18] F.Batllo, E.Duverger, J.C. Jules, J.C. Niepce, B. Jannot, M. Maglione, Dielectric and E.P.R. studies of Mn-doped barium titanate, Ferroelectrics 109(1990) 113-118

DOI: 10.1080/00150199008211399

Google Scholar

[19] M.W. Cole, P.C. Joshi, M.H. Ervin, M.C. Wood, R.L. Pfeffer, The influence of Mg doping on the materials properties of Ba1−xSrxTiO3 thin films for tunable device applications, Thin Sol. Films ,374(2000)34- 41.

DOI: 10.1016/s0040-6090(00)01059-2

Google Scholar

[20] X.F. Liang, W.B.Wu, Z.Y. Meng, Dielectric and tunable characteristics of barium strontium titanate modified with Al2O3 addition, Materials Science and Engineering, B99 (2003) 366-369

DOI: 10.1016/s0921-5107(02)00461-0

Google Scholar

[21] B. Su and T. W. Button, Microstructure and dielectric properties of Mg-doped barium strontium titanate ceramics, J. Appl. Phys., 95(2004)1382-1385

DOI: 10.1063/1.1636263

Google Scholar

[22] T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics, Journal of Materials Science Letters 15(1996) 1767-1769

DOI: 10.1007/bf00275336

Google Scholar

[23] T.I. Shakhtakhtinsky, The Effect of Porosity on the Electric Strength of Heat-resistant Concrete, IEEE Transactionson Dielectrics and Electrical insulation,4(1997)813-817

DOI: 10.1109/94.654710

Google Scholar