Cold Spraying of Titanium: A Review of Bonding Mechanisms, Microstructure and Properties

Article Preview

Abstract:

Cold gas dynamic spraying (CGDS) is a relatively new branch of surface engineering that involves modification of the surface of substrates to provide specific engineering advantages, which the substrate alone cannot provide. Cold spraying, as a metal deposition technique, involves spraying of typically 10-40 μm particles which are accelerated by a propellant gas to 300-1200 m/s at a temperature well below the melting point of material, and upon impact deform and adhere to the substrate. The deposition process in cold spraying occurs in a solid state which results in reduced oxidation and absence of phase changes; whereas, in thermal spraying deposition occurs of molten or semi molten particles. Over the last decade the interest in cold spraying has increased substantially. Considerable effort has been invested in process developments and optimization of coatings like copper. However, bonding in cold spraying is still a matter of some debate. The most prevalent theory is that when a particle travels at a minimum required velocity the particle deforms at a very high strain rate upon impact and during this deformation thermal softening dominates over work hardening in impact zone and a material jet is produced. This material jet removes oxides from the surface of the materials and the metal-to-metal contact is established between the freshly exposed surfaces. However, precisely how this high strain rate deformation behaviour of material promotes bonding is still unclear and requires further investigations. This article provides a comprehensive review of the current theories of bonding in cold spraying based on numerical modelling of impact and experimental work. The numerical modelling of the impact section reviews adiabatic shear instability phenomena, critical velocity, critical particle diameter, window of deposition of particles, particle impact on various substrates and the role of adhesion and rebound energy. The review of the experimental section describes the shear lip formation, crater formation on the substrates, role of surface oxides, characterization of bond formation, role of substrate preparations, coating build up mechanisms and contributions of mechanical and metallurgical components in bonding. Cold spraying of copper and aluminium has been widely explored in the last decade, now it is of growing interest to the scientific and engineering communities to explore the potential of titanium and its alloys. Titanium and its alloys are widely utilized in many demanding environments such as aerospace, petrochemical, biomedical etc. Titanium components are very expensive to manufacture because of the costly extraction process of titanium and their difficult to machine properties. Therefore, additive manufacturing from powder and repair of titanium components are of great interest to the aerospace industry using technologies such as cold gas spraying. Titanium coating as a barrier layer has a great potential for corrosion resistant applications. Cold spraying has a great potential to produce oxygen-sensitive materials, such as titanium, without significant chemical degradation of the powder. In-flight oxidation of materials can be avoided to a great extent in cold spraying unlike thermal spraying. This review article provides a critical overview of deposition efficiency of titanium powder particles, critical velocity, bond strength, porosity, microhardness, microstructural features including microstrain and residual stress, mechanical properties reported by various research groups. A summary of the competitor warm sprayed titanium coating is also presented in this article.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-90

Citation:

Online since:

December 2012

Authors:

Export:

Price:

[1] Papyrin, A.N., Cold spray technology 2007: Elsevier.

Google Scholar

[2] Davis, J.R., Handbook of thermal spray technology2004: TSS/ASM International.

Google Scholar

[3] McCune, R.C., Hall, J.N., Papyrin, A.N., Riggs II, W.L., and Zajchowski, P.H., An Exploration of the Cold Gas-Dynamic Spray Method for Several Materials System, in Advances in Thermal Spray Science and Technology, C.C. Berndt and S. Sampath, Editors. 1995, ASM International: Houston, TX. pp.1-5.

DOI: 10.31399/asm.cp.itsc1996p0397

Google Scholar

[4] Grujicic, M., Zhao, C.L., DeRosset, W.S., and Helfritch, D., Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials & Design, 2004. 25(8): pp.681-688.

DOI: 10.1016/j.matdes.2004.03.008

Google Scholar

[5] Schmidt, T., Gaertner, F., and Kreye, H., New developments in cold spray based on higher gas and particle temperatures. Journal of Thermal Spray Technology, 2006. 15(4): pp.488-494.

DOI: 10.1361/105996306x147144

Google Scholar

[6] Schmidt, T., Gartner, F., Assadi, H., and Kreye, H., Development of a generalized parameter window for cold spray deposition. Acta Materialia, 2006. 54(3): pp.729-742.

DOI: 10.1016/j.actamat.2005.10.005

Google Scholar

[7] Assadi, H., Gartner, F., Stoltenhoff, T., and Kreye, H., Bonding mechanism in cold gas spraying. Acta Materialia, 2003. 51(15): pp.4379-4394.

DOI: 10.1016/s1359-6454(03)00274-x

Google Scholar

[8] GmbH, C.G.T. CGT- Cold Gas Technology. 2010 [cited 2010 Sep 27]; Available from: http: /www. cgt-gmbh. com.

Google Scholar

[9] Inovati. Inovati- Home of Kinetic Metallization. 2010 [cited 2010 Sep 27]; Available from: http: /www. inovati. com.

Google Scholar

[10] Technology, S.S. CenterLine Supersonic Spray Technology (SST)- Practical Cold Spray Solutions. 2010 [cited 2010 Sep 27]; Available from: http: /www. supersonicspray. com.

Google Scholar

[11] Karthikeyan, J., The Advantages and disadvantages of the cold spray coating process, in The cold spray materials deposition process : fundamentals and applications V.K. Champagne, Editor 2007, Woodhead ; CRC Press. pp.62-71.

DOI: 10.1533/9781845693787.1.62

Google Scholar

[12] Wong, W., Irissou, E., Legoux, J. -G., and Yue, S., Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings, in Thermal spray: Global Solutions for Future Application, B.R. Marple, et al., Editors. 2010, ASM International: Singapore.

DOI: 10.31399/asm.cp.itsc2010p0084

Google Scholar

[13] Borchers, C., Gartner, F., Stoltenhoff, T., Assadi, H., and Kreye, H., Microstructural and macroscopic properties of cold sprayed copper coatings. Journal of Applied Physics, 2003. 93(12): pp.10064-10070.

DOI: 10.1063/1.1573740

Google Scholar

[14] Haynes, J., Pandey, A., Karthikeyan, J., and Kay, A., Cold Sprayed Discontinuously Reinforced Alumina (DRA) in Thermal Spray: Building on 100 Years of Success, B. R. Marple, et al., Editors. 2006, ASM International: Seattle, WA.

DOI: 10.31399/asm.cp.itsc2006p0115

Google Scholar

[15] Koivuluoto, H., Näkki, J., and Vuoristo, P., Corrosion Properties of Cold-Sprayed Tantalum Coatings. Journal of Thermal Spray Technology, 2009. 18(1): pp.75-82.

DOI: 10.1007/s11666-008-9281-2

Google Scholar

[16] Balani, K., Laha, T., Agarwal, A., Karthikeyan, J., and Munroe, N., Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating. Surface & Coatings Technology, 2005. 195(2-3): pp.272-279.

DOI: 10.1016/j.surfcoat.2004.06.028

Google Scholar

[17] Dykhuizen, R.C. and Smith, M.F., Gas dynamic principles of cold spray. Journal of Thermal Spray Technology, 1998. 7(2): pp.205-212.

DOI: 10.1361/105996398770350945

Google Scholar

[18] Alkhimov, A., Kosarev, V., and Klinkov, S., The features of cold spray nozzle design. Journal of Thermal Spray Technology, 2001. 10(2): pp.375-381.

DOI: 10.1361/105996301770349466

Google Scholar

[19] Price, T.S., Cold gas dynamic spraying of titanium coatings, 2008, University of Nottingham.

Google Scholar

[20] Oosthuizen, P.H. and Carscallen, W.E., Compressible fluid flow McGraw-Hill series in aeronautical and aerospace engineering1997: McGraw-Hill.

DOI: 10.1017/s0001924000064460

Google Scholar

[21] Grujicic, M., Zhao, C.L., Tong, C., DeRosset, W.S., and Helfritch, D., Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process. Materials Science and Engineering A, 2004. 368(1-2): pp.222-230.

DOI: 10.1016/j.msea.2003.10.312

Google Scholar

[22] Grujicic, M., Tong, C., DeRosset, W., and Helfritch, D., Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003. 217(11): pp.1603-1613.

DOI: 10.1243/095440503771909980

Google Scholar

[23] Van Steenkiste, T. and Smith, J.R., Evaluation of coatings produced via kinetic and cold spray processes. Journal of Thermal Spray Technology, 2004. 13(2): pp.274-282.

DOI: 10.1361/10599630419427

Google Scholar

[24] Lee, J., Shin, S., Kim, H., and Lee, C., Effect of gas temperature on critical velocity and deposition characteristics in kinetic spraying. Applied Surface Science, 2007. 253(7): pp.3512-3520.

DOI: 10.1016/j.apsusc.2006.07.061

Google Scholar

[25] Li, W.Y., Zhang, C., Guo, X.P., Zhang, G., Liao, H.L., Li, C.J., and Coddet, C., Effect of standoff distance on coating deposition characteristics in cold spraying. Materials & Design, 2008. 29(2): pp.297-304.

DOI: 10.1016/j.matdes.2007.02.005

Google Scholar

[26] Gartner, F., Stoltenhoff, T., Schmidt, T., and Kreye, H., The cold spray process and its potential for industrial applications. Journal of Thermal Spray Technology, 2006. 15(2): pp.223-232.

DOI: 10.1361/105996306x108110

Google Scholar

[27] Gilmore, D.L., Dykhuizen, R.C., Neiser, R.A., Roemer, T.J., and Smith, M.F., Particle velocity and deposition efficiency in the cold spray process. Journal of Thermal Spray Technology, 1999. 8(4): pp.576-582.

DOI: 10.1361/105996399770350278

Google Scholar

[28] Pattison, J., Celotto, S., Khan, A., and O'Neill, W., Standoff distance and bow shock phenomena in the Cold Spray process. Surface and Coatings Technology, 2008. 202(8): pp.1443-1454.

DOI: 10.1016/j.surfcoat.2007.06.065

Google Scholar

[29] Samareh, B., Stier, O., Lüthen, V., and Dolatabadi, A., Assessment of CFD Modeling via Flow Visualization in Cold Spray Process. Journal of Thermal Spray Technology, 2009. 18(5): pp.934-943.

DOI: 10.1007/s11666-009-9363-9

Google Scholar

[30] Stoltenhoff, T., Kreye, H., and Richter, H.J., An analysis of the cold spray process and its coatings. Journal of Thermal Spray Technology, 2002. 11(4): pp.542-550.

DOI: 10.1361/105996302770348682

Google Scholar

[31] Yin, S., Wang, X. -f., Li, W. -y., and Xu, B. -p., Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity and Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD. Journal of Thermal Spray Technology.

DOI: 10.1007/s11666-010-9510-3

Google Scholar

[32] Morgan, R., Fox, P., Pattison, J., Sutcliffe, C., and O'Neill, W., Analysis of cold gas dynamically sprayed aluminium deposits. Materials Letters, 2004. 58(7-8): pp.1317-1320.

DOI: 10.1016/j.matlet.2003.09.048

Google Scholar

[33] Bae, G., Kumar, S., Yoon, S., Kang, K., Na, H., Kim, H. -J., and Lee, C., Bonding features and associated mechanisms in kinetic sprayed titanium coatings. Acta Materialia, 2009. 57(19): pp.5654-5666.

DOI: 10.1016/j.actamat.2009.07.061

Google Scholar

[34] Bae, G., Xiong, Y., Kumar, S., Kang, K., and Lee, C., General aspects of interface bonding in kinetic sprayed coatings. Acta Materialia, 2008. 56(17): pp.4858-4868.

DOI: 10.1016/j.actamat.2008.06.003

Google Scholar

[35] Grujicic, M., Saylor, J.R., Beasley, D.E., DeRosset, W.S., and Helfritch, D., Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Applied Surface Science, 2003. 219(3-4): pp.211-227.

DOI: 10.1016/s0169-4332(03)00643-3

Google Scholar

[36] Li, C.J., Li, W.Y., and Liao, H.L., Examination of the critical velocity for deposition of particles in cold spraying. Journal of Thermal Spray Technology, 2006. 15(2): pp.212-222.

DOI: 10.1361/105996306x108093

Google Scholar

[37] Li, W.Y., Liao, H.L., Li, C.J., Bang, H.S., and Coddet, C., Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying. Applied Surface Science, 2007. 253(11): pp.5084-5091.

DOI: 10.1016/j.apsusc.2006.11.020

Google Scholar

[38] Li, W.Y., Liao, H.L., Li, C.J., Li, G., Coddet, C., and Wang, X.F., On high velocity impact of micro-sized metallic particles in cold spraying. Applied Surface Science, 2006. 253(5): pp.2852-2862.

DOI: 10.1016/j.apsusc.2006.05.126

Google Scholar

[39] Vlcek, J., Gimeno, L., Huber, H., and Lugscheider, E., A systematic approach to material eligibility for the cold-spray process. Journal of Thermal Spray Technology, 2005. 14(1): pp.125-133.

DOI: 10.1361/10599630522738

Google Scholar

[40] Yokoyama, K., Watanabe, M., Kuroda, S., Gotoh, Y., Schmidt, T., and Gartner, F., Simulation of Solid Particle Impact Behavior for Spray Processes. Materials Transactions, 2006. 47(7): pp.1697-1702.

DOI: 10.2320/matertrans.47.1697

Google Scholar

[41] King, P., Bae, G., Zahiri, S., Jahedi, M., and Lee, C., An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates. Journal of Thermal Spray Technology, 2010. 19(3): pp.620-634.

DOI: 10.1007/s11666-009-9454-7

Google Scholar

[42] Li, W. -Y., Zhang, C., Li, C. -J., and Liao, H., Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis. Journal of Thermal Spray Technology, 2009. 18(5): pp.921-933.

DOI: 10.1007/s11666-009-9325-2

Google Scholar

[43] Schmidt, T., Assadi, H., Gärtner, F., Richter, H., Stoltenhoff, T., Kreye, H., and Klassen, T., From Particle Acceleration to Impact and Bonding in Cold Spraying. Journal of Thermal Spray Technology, 2009. 18(5): pp.794-808.

DOI: 10.1007/s11666-009-9357-7

Google Scholar

[44] Assadi, H., Richter, H.J., Gartner, F., Schmidt, T., Stoltenhoff, T., Kreye, H., and Klassen, T., Particle acceleration, impact and coating formation in cold spraying, in 8th Colloquium High Velocity Oxy-fuel Flame Spray, C. Penszior and P. Heinrich, Editors. 2009, Gemeinschaft Thermisches Spritzen e.V. (Association of Thermal Sprayers): Erding near Munich. pp.27-36.

DOI: 10.1007/s11666-009-9357-7

Google Scholar

[45] Xiong, Y., Bae, G., Xiong, X., and Lee, C., The Effects of Successive Impacts and Cold Welds on the Deposition Onset of Cold Spray Coatings. Journal of Thermal Spray Technology. 19(3): pp.575-585.

DOI: 10.1007/s11666-009-9455-6

Google Scholar

[46] Guetta, S., Berger, M., Borit, F., Guipont, V., Jeandin, M., Boustie, M., Ichikawa, Y., Sakaguchi, K., and Ogawa, K., Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats. Journal of Thermal Spray Technology, 2009. 18(3): pp.331-342.

DOI: 10.1007/s11666-009-9327-0

Google Scholar

[47] Johnson, G.R. and Cook, W.H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985. 21(1): pp.31-48.

DOI: 10.1016/0013-7944(85)90052-9

Google Scholar

[48] Conrad, H. and Rice, L., The cohesion of previously fractured Fcc metals in ultrahigh vacuum. Metallurgical and Materials Transactions B, 1970. 1(11): pp.3019-3029.

DOI: 10.1007/bf03038415

Google Scholar

[49] Buckley, D.H. and Johnson, R.L., The influence of crystal structure and some properties of hexagonal metals on friction and adhesion. Wear, 1968. 11(6): pp.405-419.

DOI: 10.1016/0043-1648(68)90550-4

Google Scholar

[50] Klinkov, S.V., Kosarev, V.F., and Rein, M., Cold spray deposition: Significance of particle impact phenomena. Aerospace Science and Technology, 2005. 9(7): pp.582-591.

DOI: 10.1016/j.ast.2005.03.005

Google Scholar

[51] Schmidt, T., Gartner, F., Kreye, H., and Klassen, T., Correlation of particle impact conditions and coating properties in cold spraying, in Thermal Spray: Global Coating Solutions, E. Lugscheider, Editor 2008, ASM International: Maastricht, The Netherlands. pp.724-731.

DOI: 10.31399/asm.cp.itsc2008p0712

Google Scholar

[52] Yin, S., Wang, X. -f., Xu, B. -p., and Li, W. -y., Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying. Journal of Thermal Spray Technology.

DOI: 10.1007/s11666-010-9489-9

Google Scholar

[53] Bae, G., Kang, K., Na, H., and Lee, C., Thermally Enhanced Kinteic Sprayed Titanium Coating: Microstructure and Property Improvement for Potential Application, in Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, et al., Editors. 2009, ASM International: Las Vegas, NV. pp.290-295.

DOI: 10.31399/asm.cp.itsc2009p0290

Google Scholar

[54] Wu, J.W., Fang, H.Y., Yoon, S., Kim, H., and Lee, C., The rebound phenomenon in kinetic spraying deposition. Scripta Materialia, 2006. 54(4): pp.665-669.

DOI: 10.1016/j.scriptamat.2005.10.028

Google Scholar

[55] Kurochkin, Y.V., Demin, Y.N., and Soldatenkov, S.I., Demonstration of the Method of Cold Gasdynamic Spraying of Coatings. Chemical and Petroleum Engineering, 2002. 38(3): pp.245-248.

DOI: 10.1023/a:1019637513791

Google Scholar

[56] Alkhimov, A., Klinkov, S., and Kosarev, V., Experimental study of deformation and attachment of microparticles to an obstacle upon high-rate impact. Journal of Applied Mechanics and Technical Physics, 2000. 41(2): pp.245-250.

DOI: 10.1007/bf02465264

Google Scholar

[57] Barradas, S., Guipont, V., Molins, R., Jeandin, M., Arrigoni, M., Boustie, M., Bolis, C., Berthe, L., and Ducos, M., Laser shock flier impact simulation of particle-substrate interactions in cold spray. Journal of Thermal Spray Technology, 2007. 16(4): pp.548-556.

DOI: 10.1007/s11666-007-9069-9

Google Scholar

[58] Barradas, S., Molins, R., Jeandin, M., Arrigoni, M., Boustie, M., Bolis, C., Berthe, L., and Ducos, M., Application of laser shock adhesion testing to the study of the interlamellar strength and coating-substrate adhesion in cold-sprayed copper coating of aluminum. Surface and Coatings Technology, 2005. 197(1): pp.18-27.

DOI: 10.1016/j.surfcoat.2004.08.222

Google Scholar

[59] Champagne, V.K., Helfritch, D., Leyman, P., Ahl, S.G., and Klotz, B., Interface material mixing formed by the deposition of copper on aluminum by means of the cold spray process. Journal of Thermal Spray Technology, 2005. 14(3): pp.330-334.

DOI: 10.1361/105996305x59332

Google Scholar

[60] Christoulis, D.K., Borit, F., Guipont, F., and Jeandin, M., Evidence of the 2-stage build-up process in cold spray from the study of influence of powder characteristics on Ti-6Al-4V coating, in Thermal Spray: Global Coating Solutions, E. Lugscheider, Editor 2008, ASM International: Maastricht, The Netherlands.

DOI: 10.31399/asm.cp.itsc2008p0836

Google Scholar

[61] Dykhuizen, R.C., Smith, M.F., Gilmore, D.L., Neiser, R.A., Jiang, X., and Sampath, S., Impact of high velocity cold spray particles. Journal of Thermal Spray Technology, 1999. 8(4): pp.559-564.

DOI: 10.1361/105996399770350250

Google Scholar

[62] Kang, K., Yoon, S., Ji, Y., and Lee, C., Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 486(1-2): pp.300-307.

DOI: 10.1016/j.msea.2007.09.010

Google Scholar

[63] Li, C.J., Wang, H.T., Zhang, Q., Yang, G.J., Li, W.Y., and Liao, H., Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying. Journal of Thermal Spray Technology, 2010. 19 (1-2)(1): pp.95-101.

DOI: 10.1007/s11666-009-9427-x

Google Scholar

[64] Li, W., Guo, X., Yu, M., Liao, H., and Coddet, C., Investigation of Impact Behavior of Cold-Sprayed Large Annealed Copper Particles and Characterization of Coatings. Journal of Thermal Spray Technology.

DOI: 10.1007/s11666-010-9533-9

Google Scholar

[65] Price, T.S., Shipway, P.H., McCartney, D.G., Calla, E., and Zhang, D., A method for characterizing the degree of inter-particle bond formation in cold sprayed coatings. Journal of Thermal Spray Technology, 2007. 16(4): pp.566-570.

DOI: 10.1007/s11666-007-9070-3

Google Scholar

[66] Shkodkin, A., Kashirin, A., Klyuev, O., and Buzdygar, T., Metal particle deposition stimulation by surface abrasive treatment in gas dynamic spraying. Journal of Thermal Spray Technology, 2006. 15(3): pp.382-386.

DOI: 10.1361/105996306x124383

Google Scholar

[67] Shukla, V., Elliott, G.S., Kear, B.H., and McCandlish, L.E., Hyperkinetic deposition of nanopowders by supersonic rectangular jet impingement. Scripta Materialia, 2001. 44(8-9): pp.2179-2182.

DOI: 10.1016/s1359-6462(01)00899-5

Google Scholar

[68] Tokarev, A.O., Structure of aluminum powder coatings prepared by cold gasdynamic spraying. Metal Science and Heat Treatment, 1996. 38(3-4): pp.136-139.

DOI: 10.1007/bf01401446

Google Scholar

[69] Van Steenkiste, T.H., Smith, J.R., and Teets, R.E., Aluminum coatings via kinetic spray with relatively large powder particles. Surface & Coatings Technology, 2002. 154(2-3): pp.237-252.

DOI: 10.1016/s0257-8972(02)00018-x

Google Scholar

[70] Van Steenkiste, T.H., Smith, J.R., Teets, R.E., Moleski, J.J., Gorkiewicz, D.W., Tison, R.P., Marantz, D.R., Kowalsky, K.A., Riggs, W.L., Zajchowski, P.H., Pilsner, B., McCune, R.C., and Barnett, K.J., Kinetic spray coatings. Surface & Coatings Technology, 1999. 111(1): pp.62-71.

DOI: 10.1016/s0257-8972(98)00709-9

Google Scholar

[71] Hussain, T., McCartney, D.G., and Shipway, P.H., Impact phenomena in cold-spraying of titanium onto various ferrous alloys. Surface and Coatings Technology, 2011. 205(21-22): pp.5021-5027.

DOI: 10.1016/j.surfcoat.2011.05.003

Google Scholar

[72] Hussain, T., McCartney, D.G., Shipway, P.H., and Zhang, D., Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components. Journal of Thermal Spray Technology, 2009. 18(3): pp.364-379.

DOI: 10.1007/s11666-009-9298-1

Google Scholar

[73] Hussain, T., McCartney, D.G., and Shipway, P.H., Bonding between aluminium and copper in cold spraying: story of asymmetry. Materials Science and Technology, (2012).

DOI: 10.1179/1743284712y.0000000051

Google Scholar

[74] C.F. Rocheville, Device for Treating the Surface of a Workpiece U.S. Patent 3, 100, 724, Aug 13, (1963).

Google Scholar

[75] Koivuluoto, H., Lagerbom, J., Kylmälahti, M., and Vuoristo, P., Microstructure and Mechanical Properties of Low-Pressure Cold-Sprayed (LPCS) Coatings. Journal of Thermal Spray Technology, 2008. 17(5-6): pp.721-727.

DOI: 10.1007/s11666-008-9245-6

Google Scholar

[76] Djordjevic, B.B. and Maev, R.G., SIMATTM Application for Aerospace Corrosion Protection and Structural Repair, in Thermal Spray: Building on 100 Years of Success, B. R. Marple, et al., Editors. 2006, ASM International: Seattle, WA.

DOI: 10.31399/asm.cp.itsc2006p0185

Google Scholar

[77] Shkodkin, A., Kashirin, A., Klyuev, O., and Buzdygar, T., The Basic Principles of DYMET Technology, in Thermal Spray: Building on 100 Years of Success, B. R. Marple, et al., Editors. 2006, ASM International: Seattle, WA.

DOI: 10.31399/asm.cp.itsc2006p1443

Google Scholar

[78] Papyrin, A.N., Klinkov, S.V., and Kosarev, V.F., Effect of substrate activation on the process of cold spray coating formation, in Thermal spray: Exploring its surfacing potential, E. Lugscheider, Editor 2005, ASM International: Basel, Switzerland.

DOI: 10.31399/asm.cp.itsc2005p0145

Google Scholar

[79] Li, J.F., Agyakwa, P.A., Johnson, C.M., Zhang, D., Hussain, T., and McCartney, D.G., Characterization and solderability of cold sprayed Sn-Cu coatings on Al and Cu substrates. Surface and Coatings Technology, 2010. 204(9-10): pp.1395-1404.

DOI: 10.1016/j.surfcoat.2009.09.025

Google Scholar

[80] King, P., Zahiri, S., and Jahedi, M., Copper particle impact onto aluminium by cold spray, in Thermal Spray: Global Coating Solutions, E. Lugscheider, Editor 2008, ASM International: Maastricht, The Netherlands.

DOI: 10.31399/asm.cp.itsc2008p0720

Google Scholar

[81] Balani, K., Agarwal, A., Seal, S., and Karthikeyan, J., Transmission electron microscopy of cold sprayed 1100 aluminum coating. Scripta Materialia, 2005. 53(7): pp.845-850.

DOI: 10.1016/j.scriptamat.2005.06.008

Google Scholar

[82] Marrocco, T., McCartney, D.G., Shipway, P.H., and Sturgeon, A.J., Production of titanium deposits by cold-gas dynamic spray: Numerical modeling and experimental characterization. Journal of Thermal Spray Technology, 2006. 15(2): pp.263-272.

DOI: 10.1361/105996306x108219

Google Scholar

[83] Wu, J.W., Yang, J.G., Fang, H.Y., Yoon, S., and Lee, C., The bond strength of Al-Si coating on mild steel by kinetic spraying deposition. Applied Surface Science, 2006. 252(22): pp.7809-7814.

DOI: 10.1016/j.apsusc.2005.09.015

Google Scholar

[84] H. Mäkinen, J. Lagerbom, and P. Vuoristo, Adhesion of Cold Sprayed Coatings: Effect of Powder, Substrate, and Heat Treatment, in Thermal Spray: Global Coating Solutions, B.R. Marple, et al., Editors. 2007, ASM International: Beijing, People's Republic of China. pp.31-36.

DOI: 10.31399/asm.cp.itsc2007p0031

Google Scholar

[85] K. Sakaki, T. Tajima, H. Li, S. Shinkai, and Y. Shimizu, Influence of Substrate Conditions and Traverse Speed on Cold Sprayed Coatings, in Thermal Spray: Advances in Technology and Application 2004, ASM International: Osaka, Japan. p.358–362.

DOI: 10.31399/asm.cp.itsc2004p0358

Google Scholar

[86] Richer, P., Jodoin, B., Taylor, K., Sansoucy, E., Johnson, M., and Ajdelsztajn, L., Effect of particle geometry and substrate preparation in cold spray, in Thermal spray: Exploring it's surfacing potential, E. Lugscheider, Editor 2005, ASM International: Basel, Switzerland.

DOI: 10.31399/asm.cp.itsc2005p0193

Google Scholar

[87] Segall, A.E., Papyrin, A.N., Conway, J.C., and Shapiro, D. A cold-gas spray coating process for enhancing titanium. in TMS Annual Meeting. 1998. San Antonio, Texas: Minerals Metals Materials Soc.

DOI: 10.1007/s11837-998-0417-0

Google Scholar

[88] Sun, J.F., Han, Y., and Cui, K., Innovative fabrication of porous titanium coating on titanium by cold spraying and vacuum sintering. Materials Letters, 2008. 62(21-22): pp.3623-3625.

DOI: 10.1016/j.matlet.2008.04.011

Google Scholar

[89] Dosta, S., Cinca, N., Garcia, J., Salito, A., and Guilemany, J.M., Cold spray perspectives in Medical Engineering, in 8th Colloquium High Velocity Oxy-fuel Flame Spray, C. Penszior and P. Heinrich, Editors. 2009, Gemeinschaft Thermisches Spritzen e.V. (Association of Thermal Sprayers): Erding near Munich. pp.151-156.

Google Scholar

[90] Li, W.Y., Zhang, C., Wang, H.T., Guo, X.P., Liao, H.L., Li, C.J., and Coddet, C., Significant influences of metal reactivity and oxide films at particle surfaces on coating microstructure in cold spraying. Applied Surface Science, 2007. 253(7): pp.3557-3562.

DOI: 10.1016/j.apsusc.2006.07.063

Google Scholar

[91] Li, C. -J. and Li, W. -Y., Deposition characteristics of titanium coating in cold spraying. Surface and Coatings Technology, 2003. 167(2-3): pp.278-283.

DOI: 10.1016/s0257-8972(02)00919-2

Google Scholar

[92] Wong, W., Rezaeian, A., Irissou, E., Legoux, J. -G., and Yue, S., Cold Spray Characteristics of Commercially Pure Ti and Ti-6Al-4V. Advanced Materials Research, 2010. 89-91: pp.639-644.

DOI: 10.4028/www.scientific.net/amr.89-91.639

Google Scholar

[93] Wong, W., Rezaeian, A., Yue, S., and Legoux, J.G., Effects of Gas Temperature, Gas Pressure and the Particle Characteristics on Cold Sprayed Pure Titanium Coatings, in Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, et al., Editors. 2009, ASM International: Las Vegas, NV. pp.231-236.

DOI: 10.31399/asm.cp.itsc2009p0231

Google Scholar

[94] Gulizia, S., Trentin, A., Vezzu, S., Rech, S., King, P., Jahedi, M., and Guagliano, M., Microstucture and Mechanical Properties of Cold spray Titanium Coatings, in Thermal spray: Global Solutions for Future Application, B.R. Marple, et al., Editors. 2010, ASM International: Singapore.

DOI: 10.31399/asm.cp.itsc2010p0080

Google Scholar

[95] Grenier, S., Brzezinski, T., Allaire, F., and Tsantrizos, P., VPS Deposition of Spherical Ti-Based Powders Produced by Plasma Atomization in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Editor 1998, ASM International: Nice, France. pp.1277-1282.

DOI: 10.31399/asm.cp.itsc1998p1277

Google Scholar

[96] Yule, A.J. and Dunkley, J.J., Atomization of melts : for powder production and spray deposition Oxford series on advanced manufacturing ; 111994: Oxford University Press.

Google Scholar

[97] Alagheband, A. and Brown, C., Plasma Atomization goes commercial. Metal Powder Report, 1998. 53(11): pp.26-28.

DOI: 10.1016/s0026-0657(99)80007-1

Google Scholar

[98] Blose, R.E., Spray Forming Titanium Alloys Using the Cold Spray Process., in Thermal spray: Exploring its surfacing potential, E. Lugscheider, Editor 2005, ASM International: Basel, Switzerland.

DOI: 10.31399/asm.cp.itsc2005p0199

Google Scholar

[99] Blose, R.E., Walker, B.H., Walker, R.M., and Froes, S.H., New opportunities to use cold spray process for applying additive features to titanium alloys. Metal Powder Report, 2006. 61(9): pp.30-37.

DOI: 10.1016/s0026-0657(06)70713-5

Google Scholar

[100] Blose, R.E., Walker, B.H., Walker, R.M., and Froes, S.H., Depositing Titanium Alloy Additive Features to Forgings and Extrusions Using the Cold Spray Process, in Thermal Spray: Building on 100 Years of Success, B. R. Marple, et al., Editors. 2006, ASM International: Seattle, WA.

DOI: 10.31399/asm.cp.itsc2006p0179

Google Scholar

[101] Hussain, T., A Study of Bonding Mechanisms and Corrosion Behaviour of Cold Sprayed Coatings2011: University of Nottingham. 295.

Google Scholar

[102] Razaeian, A., Chromik, R.R., Yue, S., Irissou, E., and Legoux, J.G., Characterization of cold-sprayed Ni, Ti and Cu coating properties for their optimizations, in Thermal Spray: Global Coating Solutions, E. Lugscheider, Editor 2008, ASM International: Maastricht, The Netherlands.

Google Scholar

[103] Zahiri, S.H., Jahedi, M., and Yang, W., Particle image velocimetry of cold spray CP titanium, in Thermal Spray: Global Coating Solutions, E. Lugscheider, Editor 2008, ASM International: Maastricht, The Netherlands.

DOI: 10.31399/asm.cp.itsc2008p0620

Google Scholar

[104] Chromik, R.R., Goldbaum, D., Shockley, J.M., Yue, S., Irissou, E., Legoux, J. -G., and Randall, N.X., Modified ball bond shear test for determination of adhesion strength of cold spray splats. Surface and Coatings Technology, 2010. 205(5): pp.1409-1414.

DOI: 10.1016/j.surfcoat.2010.07.037

Google Scholar

[105] Lima, R.S., Kucuk, A., Berndt, C.C., Karthikeyan, J., Kay, C.M., and Lindemann, J., Deposition efficiency, mechanical properties and coating roughness in cold-sprayed titanium. Journal of Materials Science Letters, 2002. 21(21): pp.1687-1689.

DOI: 10.1023/a:1020833011448

Google Scholar

[106] Zahiri, S.H., Yang, W., and Jahedi, M., Characterization of Cold Spray Titanium Supersonic Jet. Journal of Thermal Spray Technology, 2009. 18(1): pp.110-117.

DOI: 10.1007/s11666-008-9278-x

Google Scholar

[107] Wang, H. -R., Hou, B. -R., Wang, J., Wang, Q., and Li, W. -Y., Effect of Process Conditions on Microstructure and Corrosion Resistance of Cold-Sprayed Ti Coatings. Journal of Thermal Spray Technology, 2008. 17(5): pp.736-741.

DOI: 10.1007/s11666-008-9256-3

Google Scholar

[108] Li, W.Y., Zhang, C., Guo, X.P., Li, C.J., Liao, H.L., and Coddet, C., Study on impact fusion at particle interfaces and its effect on coating microstructure in cold spraying. Applied Surface Science, 2007. 254(2): pp.517-526.

DOI: 10.1016/j.apsusc.2007.06.026

Google Scholar

[109] Price, T.S., Shipway, P.H., and McCartney, D.G., Effect of cold spray deposition of a titanium coating on fatigue behavior of a titanium alloy. Journal of Thermal Spray Technology, 2006. 15(4): pp.507-512.

DOI: 10.1361/105996306x147108

Google Scholar

[110] Zahiri, S.H., Antonio, C.L., and Jahedi, M., Elimination of porosity in directly fabricated titanium via cold gas dynamic spraying. Journal of Materials Processing Technology, 2009. 209(2): pp.922-929.

DOI: 10.1016/j.jmatprotec.2008.03.005

Google Scholar

[111] Zahiri, S.H., Mayo, S.C., and Jahedi, M., Characterization of cold spray titanium deposits by X-ray microscopy and microtomography. Microscopy and Microanalysis, 2008. 14(3): pp.260-266.

DOI: 10.1017/s1431927608080355

Google Scholar

[112] . Ilavsky, J., Characterization of Complex Thermal Barrier Deposits Pore Microstructures by a Combination of Imaging, Scattering, and Intrusion Techniques. Journal of Thermal Spray Technology, 2010. 19(1): pp.178-189.

DOI: 10.1007/s11666-009-9361-y

Google Scholar

[113] Hussain, T., McCartney, D.G., Shipway, P.H., and Marrocco, T., Corrosion Behavior of Cold Sprayed Titanium Coatings and Free Standing Deposits. Journal of Thermal Spray Technology, 2011. 20(1-2): pp.260-274.

DOI: 10.1007/s11666-010-9540-x

Google Scholar

[114] Moy, C.K.S., Cairney, J., Ranzi, G., Jahedi, M., and Ringer, S.P., Investigating the microstructure and composition of cold gas-dynamic spray (CGDS) Ti powder deposited on Al 6063 substrate. Surface and Coatings Technology, 2010. 204(23): pp.3739-3749.

DOI: 10.1016/j.surfcoat.2010.04.016

Google Scholar

[115] Zahiri, S.H., Fraser, D., and Jahedi, M., Recrystallization of Cold Spray-Fabricated CP Titanium Structures. Journal of Thermal Spray Technology, 2009. 18(1): pp.16-22.

DOI: 10.1007/s11666-008-9212-2

Google Scholar

[116] Li, W.Y., Zhang, C., Guo, X., Xu, J., Li, C.J., Liao, H., Coddet, C., and Khor, K.A., Ti and Ti-6Al-4V Coatings by Cold Spraying and Microstructure Modification by Heat Treatment. Advanced Engineering Materials, 2007. 9(5): pp.418-423.

DOI: 10.1002/adem.200700022

Google Scholar

[117] Gulizia, S., Tiganis, B., Jahedi, M.Z., Wright, N., Gengenbach, T., and MacRae, C., Effects of Cold Spray Process Gas Temperature on CP Titanium Structure, in Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, et al., Editors. 2009, ASM International: Las Vegas, NV. pp.237-242.

DOI: 10.31399/asm.cp.itsc2009p0237

Google Scholar

[118] King, P.C. and Jahedi, M., Transmission electron microscopy of cold sprayed titanium, in Thermal spray: Global Solutions for Future Application, B.R. Marple, et al., Editors. 2010, ASM International: Singapore. p. May 3- 5.

DOI: 10.31399/asm.cp.itsc2010p0004

Google Scholar

[119] Bae, G., Kang, K., Kim, J. -J., and Lee, C., Nanostructure formation and its effects on the mechanical properties of kinetic sprayed titanium coating. Materials Science and Engineering: A, 2010. 527(23): pp.6313-6319.

DOI: 10.1016/j.msea.2010.06.037

Google Scholar

[120] Cullity, B.D. and Stock, S.R., Elements of X-ray diffraction 2001: Prentice Hall.

Google Scholar

[121] Rafaja, D., Schucknecht, T., Klemm, V., Paul, A., and Berek, H., Microstructural characterisation of titanium coatings deposited using cold gas spraying on Al2O3 substrates. Surface and Coatings Technology, 2009. 203(20-21): pp.3206-3213.

DOI: 10.1016/j.surfcoat.2009.03.054

Google Scholar

[122] Watts, J.F. and Wolstenholme, J., An introduction to surface analysis by XPS and AES2003: J. Wiley.

Google Scholar

[123] Binder, K., Gartner, F., and Klassen, T., Ti-Parts for Aviation Industry produced by Cold Spraying, in Thermal spray: Global Solutions for Future Application, B.R. Marple, et al., Editors. 2010, ASM International: Singapore.

DOI: 10.31399/asm.cp.itsc2010p0572

Google Scholar

[124] Jazi, H.R.S., Coyle, T.W., and Mostaghimi, J., Understanding grain growth and pore elimination in vacuum-plasma-sprayed titanium alloy. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2007. 38A(3): pp.476-484.

DOI: 10.1007/s11661-006-9075-4

Google Scholar

[125] Li, C. -j. and Li, W. -y., Microstructure evolution of cold-sprayed coating during deposition and through post-spraying heat treatment. Transactions of Nonferrous Metals Society of China 2004. 14(2): pp.49-55.

Google Scholar

[126] Marrocco, T., Hussain, T., McCartney, D.G., and Shipway, P.H., Corrosion Performance of Laser Posttreated Cold Sprayed Titanium Coatings. Journal of Thermal Spray Technology, 2011. 20(4): pp.909-917.

DOI: 10.1007/s11666-011-9637-x

Google Scholar

[127] Kim, K., Watanabe, M., Kawakita, J., and Kuroda, S., Effects of Temperature of In-flight Particles on Bonding and Microstructure in Warm-Sprayed Titanium Deposits. Journal of Thermal Spray Technology, (2009).

DOI: 10.1007/s11666-009-9303-8

Google Scholar

[128] Kim, K., Watanabe, M., Kawakita, J., and Kuroda, S., Grain refinement in a single titanium powder particle impacted at high velocity. Scripta Materialia, 2008. 59(7): pp.768-771.

DOI: 10.1016/j.scriptamat.2008.06.020

Google Scholar

[129] Kim, K., Watanabe, M., and Kuroda, S., Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity. Surface and Coatings Technology, 2010. 204(14): pp.2175-2180.

DOI: 10.1016/j.surfcoat.2009.12.001

Google Scholar

[130] Kim, K., Watanabe, M., and Kuroda, S., Thermal softening effect on the deposition efficiency and microstructure of warm sprayed metallic powder. Scripta Materialia, 2009. 60(8): pp.710-713.

DOI: 10.1016/j.scriptamat.2008.12.050

Google Scholar

[131] Kim, K., Watanabe, M., and Kuroda, S., Jetting-Out Phenomenon Associated with Bonding of Warm-Sprayed Titanium Particles onto Steel Substrate. Journal of Thermal Spray Technology, 2009. 18(4): pp.490-499.

DOI: 10.1007/s11666-009-9379-1

Google Scholar

[132] Kim, K., Watanabe, M., Mitsuishi, K., Iakoubovskii, K., and Kuroda, S., Impact bonding and rebounding between kinetically sprayed titanium particle and steel substrate revealed by high-resolution electron microscopy. Journal of Physics D-Applied Physics, 2009. 42(6): p.5.

DOI: 10.1088/0022-3727/42/6/065304

Google Scholar

[133] Kawakita , J., Watanabe, M., and Kuroda, S., Densification of Ti Coatings by Bi-modal Size Distribution of Feedstock Powder during Warm Spraying, in Thermal Spray: Global Coating Solutions, B.R. Marple, et al., Editors. 2007, ASM International: Beijing, People's Republic of China. pp.43-47.

DOI: 10.31399/asm.cp.itsc2007p0043

Google Scholar

[134] Deng, C.M., Deng, C.G., Liu, M., Huang, J., Zhou, K.S., Chen, Z.K., Wank, A., and Schwenk, A., Corrosion of Ti coating prepared by modified HVOF process, in Thermal spray: Global Solutions for Future Application, B.R. Marple, et al., Editors. 2010, ASM International: Singapore.

DOI: 10.31399/asm.cp.itsc2010p0658

Google Scholar

[135] Kawakita, J., Kuroda, S., Fukushima, T., Katanoda, H., Matsuo, K., and Fukanuma, H., Dense titanium coatings by modified HVOF spraying. Surface & Coatings Technology, 2006. 201(3-4): pp.1250-1255.

DOI: 10.1016/j.surfcoat.2006.01.056

Google Scholar