Effect of Process Parameters on Surface Roughness in Hammer Peening and Deep Rolling

Article Preview

Abstract:

The challenges in die and mold making industry to increase productivity and reduce costs can be addressed by expanding the automation in the process chain. Conventionally the final surface quality is produced by manual polishing operations. This expensive time-consuming production step can be reduced significantly by using machine hammer peening (MHP) and deep rolling (DR). For both processes the emphasis of each process parameter on the resulting surface topographyis largely unknown. This gap of knowledge about significant and non-significant parameters needs to be closed in order to allow a fast process optimization and more economic use of both methods. Therefore this study focuses on figuring out the statistically secured effect of each process parameter on the attainable surface smoothing on cast iron and tool steel. Based on a fractional factorial test design the results of an experimental parameter study are presented and significant parameters are identified. Using a high-speed camera, it may also be proved why an inclination angle between the hammering direction and surface normal is advantageous with regard to the resulting surface quality. Finally, the results are discussed and advices for an industrial use of MHP and DR are given.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

1887-1901

Citation:

Online since:

June 2013

Export:

Price:

[1] T. Altan, P. Fallböhmer, Entwicklungen im Werkzeugbau in Forschung und Industrie – Perspektiven aus den USA, Proceedings of the EMO, Hannover, (1997)

Google Scholar

[2] J. Wied, Oberflächenbehandlung von Umformwerkzeugen durch Festklopfen. Dissertation, TU Darmstadt, Darmstadt, published online, (2011)

Google Scholar

[3] V. Schulze, Modern mechanical surface treatment, WILEY-VCH Verlag, Weinheim, (2006)

Google Scholar

[4] P. Groche, M. Steitz, Prozesskettenverkürzung im Werkzeugbau – Integration von Verfahren der maschinellen Oberflächeneinglättung, VDI-Z Integrierte Produktion, Springer VDI Verlag, Düsseldorf, Jahrgang 101, Heft 10 (2011) 655–659

DOI: 10.37544/1436-4980-2011-10-655

Google Scholar

[5] P. Groche, M. Engels, M. Steitz, C. Müller, J. Scheil, M. Heilmeier, Potential of mechanical surface treatment for mould and die production, International Journal of Materials Research, Volume 103, June (2012) 683-689

DOI: 10.3139/146.110778

Google Scholar

[6] P. Groche, M. Engels, C. Müller, K. Bauer, Optimierung des Abrieb- und Verschleißverhaltens von Werkzeugoberflächen durch Randschichtverfestigung. Abschlussbericht zum EFB-Projekt 23/203 AIF 14846N, (2010)

Google Scholar

[7] L. Hacini, N. van Le, Effect of impact energy on residual stresses induced by hammer peening of 304L plates, Journal of Materials Processing Technology 208 (2008) 542-548

DOI: 10.1016/j.jmatprotec.2008.01.025

Google Scholar

[8] J. Wied, Machine polishing of metal forming dies, Master thesis, Royal Institute of Technology, Stockholm, 2006.

Google Scholar

[9] J. et al. Liu, Effect of hammer peening on fatigue life of aluminium alloy 2A12-T4, Materials & Design 30 (2009) 1944-1949

DOI: 10.1016/j.matdes.2008.09.010

Google Scholar

[10] P. Schaumann, C. Keindorf, Enhancing fatigue strength by ultrasonic impact treatment for welded joints of offshore structures, Third International Conference on Steel and Composite Structures, Manchester (2007) 921 - 926

Google Scholar

[11] R. Schaal et al., FE-Festwalzsimulation und Dauerfestigkeitsberechnung festgewalzter Bauteile mit Konzepten der Schwingbruchmechanik, Materialwissenschaft und Werkstofftechnik 32, Weinheim, WILEY-VCH Verlag (2001) 477-482

DOI: 10.1002/1521-4052(200105)32:5<477::aid-mawe477>3.0.co;2-4

Google Scholar

[12] J. Wied, J Scheil, M. Klamser, C. Berger, Impact experiments and finite element simulation of surface roughness reduction by machine hammer peening, Materialwissenschaft und Werkstofftechnik 42 (2001) 827-832

DOI: 10.1002/mawe.201100768

Google Scholar

[13] P. Groche, M. Engels, C. Müller, Wear behavior of sheet metal forming tools made from nodular cast iron after mechanical surface treatments, Transactions of North American Manufacturing Research Insitution of SME (2010) 531 – 538

Google Scholar

[14] F. Bleicher, C. Lechner, C Habersohn, E. Kozeschnik, B. Adjassoho, H Kaminski, Mechanism of surface modification using machine hammer peening technology, CIRP Annals – Manufacturing Technology 61 (2012) 375-378

DOI: 10.1016/j.cirp.2012.03.139

Google Scholar

[15] P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, Influence of deep rolling and low plasticity burnishing on surface hardness and surface roughness of AISI 4140 steel, Engineering and Technology 72 (2010) 619-624

Google Scholar

[16] L. Luca; S. Neagu-Ventzel; I. Marinescu: Effects of working parameters on surface finish in ball-burnishing of hardened steels, Precision Engineering 29 (2005) 253-256

DOI: 10.1016/j.precisioneng.2004.02.002

Google Scholar

[17] J. Ungermann, Zuverlässigkeitsnachweis und Zuverlässigkeitsentwicklung in der Gesamtfahrzeugerprobung; Dissertation, ETH Zürich, (2009)

Google Scholar

[18] W. Kleppmann, Taschenbuch Versuchsplanung; Produkte und Prozesse optimieren, Carl Hanser Verlag, München, (2008)

DOI: 10.3139/9783446429420.bm

Google Scholar

[19] P. Groche, M. Engels, M. Steitz, C. Müller, J. Scheil, Einglättung durch Festwalzen und Festklopfen – Handlungsrichtlinien für den effizienten Werkzeugbau, VDI-Z Integrierte Produktion, Springer VDI Verlag, Düsseldorf (2012) 51-56

DOI: 10.37544/1436-4980-2012-10-665

Google Scholar