Recent Development in Clay Based Functional Coating for Corrosion Protection

Article Preview

Abstract:

There is a large variety of techniques available to protect metals from various types of corrosion. Till date chromate containing metal coatings is one of the most commonly used methods. Layered clays are basically of two types depending on the type of ion exchange capacity. In the recent years different researchers demonstrated the use of such cation/ anionic clays as potential nanocontainers for the inhibitors. These nanocontainers can be used in the coating to induce self-repairing capacity when the coating surface is damaged. Due to the disturbance in the pH and availability of chloride ions clay based nanocontainers can release the inhibitor to protect the surface. In the recent year use of anionic clay like hydrotalcites or layered double hydroxides are much studied in comparison to cationic clay like montmorillonite. This review critically analysed the potential of these clay in the future development of self-healing coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-109

Citation:

Online since:

July 2013

Export:

Price:

[1] T.T.X. Hang, T.A. Truc, T.H. Nam, V.K. Oanh, J.-B. Jorcin, N. Pébère, Corrosion protection of carbon steel by an epoxy resin containing organically modified clay, Surface Coat. Technol. 201 (2007) 7408–7415.

DOI: 10.1016/j.surfcoat.2007.02.009

Google Scholar

[2] J.-M. Yeh, K.-C. Chang, Polymer/layered silicate nanocomposite anticorrosive coatings, J Ind Engg Chem, 14 (2008) 275–291.

DOI: 10.1016/j.jiec.2008.01.011

Google Scholar

[3] R. L. Twite and G. P. Bierwagen, Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys, Prog. Org. Coat., 33 (1998) 91-100.

DOI: 10.1016/s0300-9440(98)00015-0

Google Scholar

[4] M. Bethencourt, F. J. Botana, J. J. Calvino, M. Marcos and C. M. A. Rodrıguez, Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review, Corros. Sci., 40 (1998) 1803-1819.

DOI: 10.1016/s0010-938x(98)00077-8

Google Scholar

[5] P. Campestrini, E. V. Westing and J. H. W. de Wit, Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part I: Nucleation and growth, Electrochim. Acta, 46 (2001) 2553–2571.

DOI: 10.1016/s0013-4686(01)00475-3

Google Scholar

[6] R. B. Faltermeier, A corrosion inhibitor test for copper-based artifacts, Stud. Conserv., 44 (1999) 44, 121-128. (b) C. Sease, Benzotriazole: a review for conservators, Stud. Conserv., 23 (1978) 76-85.

DOI: 10.1179/sic.1999.44.2.121

Google Scholar

[7] P. G. Cao, J. L. Yao, J. W. Zheng, R. A. Gu and Z. Q. Tian, Comparative Study of Inhibition Effects of Benzotriazole for Metals in Neutral Solutions As Observed with Surface-Enhanced Raman Spectroscopy, Langmuir, 18 (2002) 100-104.

DOI: 10.1021/la010575p

Google Scholar

[8] D. G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M. G. S. Ferreira and H. Mohvald, Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection, Adv. Mater., 18 (2006) 1672-1678.

DOI: 10.1002/adma.200502053

Google Scholar

[9] S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, M.F. Montemor, M.G.S. Ferreira, High effective organic inhibitor corrosion for 2024 aluminum alloy, Electrochim. Acta. 52(2007) 7231-7247

DOI: 10.1016/j.electacta.2007.05.058

Google Scholar

[10] S. H. Sanad, Effect of benzotriazole on acid corrosion of steel, Surf. Technol., 22 (1984) 29-37.

Google Scholar

[11] G. Bereket and A. Pinarbasi, Electrochemical thermodynamic and kinetic studies of the behaviour of aluminium in hydrochloric acid containing various benzotriazole derivatives, Corros. Eng., Sci. Technol., 39 (2004) 308-312.

DOI: 10.1179/174327804x13136

Google Scholar

[12] C. S. Yelleswarapu, G. Gu, E. Abdullayev, Y. Lvov and D. V. G. L. N. Rao, Nonlinear optics of nontoxic nanomaterials, Opt. Commun., 283 (2010) 438-441.

DOI: 10.1016/j.optcom.2009.10.001

Google Scholar

[13] O. M. Magnussen and R. J. Behm, Atomic-scale processes in Cu corrosion and corrosion inhibition, MRS bulletin, 24 (1999) 16-23.

DOI: 10.1557/s0883769400052659

Google Scholar

[14] D. G. Shchukin, S. V. Lamaka, K. A. Yasakau, M. L. Zheludkevich, M. G. S. Ferreira, H. Mohwald, Active Anticorrosion Coatings with Halloysite Nanocontainers, J. Phys. Chem. C, 112 (2008) 958-964.

DOI: 10.1021/jp076188r

Google Scholar

[15] D. G. Shchukin and H. Möhwald, Self-Repairing Coatings Containing Active Nanoreservoirs, Small, 3 (2007) 926-943.

DOI: 10.1002/smll.200700064

Google Scholar

[16] D. Fix, D. Andreeva, Y. Lvov, D. Shchukin and H. Möhwald, Application of Inhibitor-Loaded Halloysite Nanotubes in Active Anti-Corrosive Coatings, Adv. Funct. Mater., 19 (2009) 1720-1727.

DOI: 10.1002/adfm.200800946

Google Scholar

[17] D. Shchukin and H. Möhwald, Adv. Funct. Mater., Surface-Engineered Nanocontainers for Entrapment of Corrosion Inhibitors, 17 (2007) 1451-1458.

DOI: 10.1002/adfm.200601226

Google Scholar

[18] E. Abdullayev, R. Price, D. Shchukin and Y. Lvov, Halloysite Tubes as Nanocontainers for Anticorrosion Coating with Benzotriazole, ACS Appl. Mater. Interfaces, 1 (2009) 1437-1443.

DOI: 10.1021/am9002028

Google Scholar

[19] A.N. Kramov, N.N. Voevodin, V.N. Balbyshev, R.A. Mantz, Sol-gel-derived corrosion protective with controllable release of incorporate organic corrosion inhibitors, Thin Solid Films 483 (2005) 191-196.].

DOI: 10.1016/j.tsf.2004.12.021

Google Scholar

[20] K. Koch, B. Bhushan, H. J. Ensikat, W. Barthlott, Self-healing of voids in the wax coating on plant surfaces, Philos. Trans. R. Soc. A 367 (2009) 1673-1688.

DOI: 10.1098/rsta.2009.0015

Google Scholar

[21] K. Koch, H. J. Ensikat, The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly, Micron, 39 (2008) 759-772.

DOI: 10.1016/j.micron.2007.11.010

Google Scholar

[22] N. Filipovic, M. Kojic, A. Tsuda, Modelling thrombosis using dissipative particle dynamics method, Philos. Trans. R. Soc. A 366 (2008) 3265-3279.

DOI: 10.1098/rsta.2008.0097

Google Scholar

[23] S. K. Ghosh, Ed., Self-Healing Materials: Fundamentals, Design Strategies, and Applications; Wiley-VCH: Weinheim, Germany, 2008.

Google Scholar

[24] D. Raps, T. Hack, J. Wehr, M. L. Zheludkevich, A. C. Bastos, M. G. S. Ferreira, O. Nuyken, Electrochemical study of inhibitor-containing organic–inorganic hybrid coatings on AA2024, Corros. Sci. 51 (2009) 1012-1021.

DOI: 10.1016/j.corsci.2009.02.018

Google Scholar

[25] G. Blustein, A. R. D. Sarli, J. A. Jae´n, R. Romagnoli, B. D. Amo, Study of iron benzoate as a novel steel corrosion inhibitor pigment for protective paint films, Corros. Sci. 49 (2007) 4202-4231.

DOI: 10.1016/j.corsci.2007.05.008

Google Scholar

[26] E. W. Brooman, Modifying organic coatings to provide corrosion resistance, Part I: Background and general principles, Metal Finishing 100 (2002) 48-53.

DOI: 10.1016/s0026-0576(02)80019-8

Google Scholar

[27] R. G. Buchheit, H. Guan, S. Mahajanam, F. Wong, Active corrosion protection and corrosion sensing in chromate-free organic coatings, Prog. Org. Coat., 47 (2003) 174 - 182.

DOI: 10.1016/j.porgcoat.2003.08.003

Google Scholar

[28] J. Tedim, S. K. Poznyak, A. Kuznetsova, D. Raps, T. Hack, M. L. Zheludkevich, M. G. S. Ferreira, ACS Appl. Mater. Interfaces, 2 (2010) 1528.

DOI: 10.1021/am100174t

Google Scholar

[29] H. Tatematsu, T. Sasaki, Repair materials system for chloride-induced corrosion of reinforcing bars, Cem. Concr. Compos. 25 (2003) 123-129.

DOI: 10.1016/s0958-9465(01)00059-2

Google Scholar

[30] K. D. Ralston, S. Chrisanti, T. L. Young and R. G. Buchheit, Corrosion Inhibition of Aluminum Alloy 2024-T3 by Aqueous Vanadium Species, J. Electrochem. Soc., 155 (2008) C350-C359.

DOI: 10.1149/1.2907772

Google Scholar

[31] J.-Y. Uan, J.-K. Lin, Y.-S. Tung, Direct growth of oriented Mg–Al layered double hydroxide film on Mg alloy in aqueous HCO3−/CO32− solution, J. Mater. Chem., 20 (2010) 761-766.

DOI: 10.1039/b917177k

Google Scholar

[32] J. Wang, D. Li, X. Yu, X. Jing, M. Zhang and Z. Jiang, Hydrotalcite conversion coating on Mg alloy and its corrosion resistance, J. Alloys Compd., 494 (2010) 271-274.

DOI: 10.1016/j.jallcom.2010.01.007

Google Scholar

[33] X. Guo, S. Xu, L. Zhao, W. Lu, F. Zhang, D. G. Evans and X. Duan, One-Step Hydrothermal Crystallization of a Layered Double Hydroxide/Alumina Bilayer Film on Aluminum and Its Corrosion Resistance Properties, Langmuir, 25 (2009) 9894-9897.

DOI: 10.1021/la901012w

Google Scholar

[34] C. D. Hoyo, Layered double hydroxides and human health: An overview, Appl. Clay Sci., 36 (2007) 103-121.

Google Scholar

[35] J. Tedim, M. L. Zheludkevich, A. N. Salak, A. Lisenkov, M. G. S. Ferreira, Nanostructured LDH-container layer with active protection functionality, J. Mater. Chem., 21 (2011) 15464-15470.

DOI: 10.1039/c1jm12463c

Google Scholar

[36] J. Tedim, A. Kuznetsova, A.N. Salak, F. Montemor, D. Snihirova, M. Pilz, M.L. Zheludkevich, M.G.S. Ferreira, Zn–Al layered double hydroxides as chloride nanotraps in active protective coatings, Corros. Sci. 55 (2012) 1–4.

DOI: 10.1016/j.corsci.2011.10.003

Google Scholar

[37] Y. Wang, D. Zhang, Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn–Al layered double hydroxides, Mater Res Bull, 46 (2011) 1963–(1968)

DOI: 10.1016/j.materresbull.2011.07.021

Google Scholar

[38] S. K. Poznyak, J. Tedim, L. M. Rodrigues, A. N. Salak, M. L. Zheludkevich, L. F. P. Dick, M. G. S. Ferreira, Novel Inorganic Host Layered Double Hydroxides Intercalated with Guest Organic Inhibitors for Anticorrosion Applications, Applied Mater. Interface, 1 (2009) 2353–2362.

DOI: 10.1021/am900495r

Google Scholar

[39] G. Williams and H. N. McMurray, Anion-Exchange Inhibition of Filiform Corrosion on Organic Coated AA2024-T3 Aluminum Alloy by Hydrotalcite-Like Pigments, Electrochem. Solid-State Lett., 6 (2003) B9-B11; (b) G. Williams and H. N. McMurray, Inhibition of Filiform Corrosion on Polymer Coated AA2024-T3 by Hydrotalcite-Like Pigments Incorporating Organic Anions, Electrochem. Solid-State Lett., 7 (2004) B13-B15.

DOI: 10.1149/1.1539771

Google Scholar

[40] F. Z. Zhang, M. Sun, S. L. Xu, L. L. Zhao and B. W. Zhang, Fabrication of oriented layered double hydroxide films by spin coating and their use in corrosion protection, Chem. Eng. J., 141 (2008) 362-367.

DOI: 10.1016/j.cej.2008.03.016

Google Scholar

[41] W. Zhang and R. G. Buchheit, Hydrotalcite Coating Formation on Al-Cu-Mg Alloys from Oxidizing Bath Chemistries, Corrosion, 58 (2002) 591-600.

DOI: 10.5006/1.3277650

Google Scholar

[42] J. K. Lin and J. Y. Uan, Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3−/CO32− and corresponding protection against corrosion by the coating, Corros. Sci., 51 (2009) 1181-1188.

DOI: 10.1016/j.corsci.2009.02.007

Google Scholar

[43] Wei-I Hung, Kung-Chin Chang, Ya-Han Chang and Jui-Ming Yeh, Advanced Anticorrosive Coatings Prepared from Polymer-Clay Nanocomposite Materials in: Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications, .Ed. B. Reddy, 2011, pp.561-583.

DOI: 10.5772/15355

Google Scholar

[44] R. G. Buchheit, S.B. Mamidipally, P. Schmutz, H. Guan, Active corrosion protection in Ce-modifiedhHydrotalcite conversion coatings, Corrosion 58 (2002) 3-14.

DOI: 10.5006/1.3277303

Google Scholar

[45] R. B. Leggat, W. Zhang, R.G. Buchheit, S.R. Taylor, Performance of hydrotalcite conversion treatments on AA2024-T3 when used in a coating system, Corrosion 58 (2002) 322-328.

DOI: 10.5006/1.3287681

Google Scholar

[46] (a) Yeh, J. M.; Liou, S. J.; Lai, C. Y.; Wu, P. C. & Tsai, T. Y. (2001). Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline clay nanocomposite materials. Chem. Mater. 13 (2001) 1131-1136 (b) J.-M. Yeh, K.-C. Chang, Polymer/layered silicate nanocomposite anticorrosive coatings, J Industrial Eng Chem 14 (2008) 275–291.

DOI: 10.1021/cm000938r

Google Scholar

[47] T. Sugama, Polyphenylenesulfied/montomorillonite clay nanocomposite coatings: their efficacy in protecting steel against corrosion, Materials Letters 60 (2006) 2700–2706.

DOI: 10.1016/j.matlet.2006.01.111

Google Scholar

[48] K.-C. Chang, S.-T. Chen, H.-F. Lin, C.-Y. Lin, H.-H. Huang, J.-M. Yeh,Y. H. Yu, Effect of clay on the corrosion protection efficiency of PMMA/Na+-MMT clay nanocomposite coatings evaluated by electrochemical measurements. Eur. Polym. J. 44 (2008) 13–23.

DOI: 10.1016/j.eurpolymj.2007.10.011

Google Scholar

[49] C.-F. Dai, P.-R. Li, J.-M. Yeh, Comparative studies for the effect of intercalating agent on the physical properties of epoxy resin-clay based nanocomposite materials, Eur. Polym. J. 44 (2008) 2439–2447.

DOI: 10.1016/j.eurpolymj.2008.06.015

Google Scholar

[50] D. Piazza, D. S. Silveira, N. P. Lorandi, E. J. Birriel, L. C. Scienza, A. J. Zattera, Polyester-based powder coatings with montmorillonite nanoparticles applied on carbon steel, Prog Org. Coat. 73 (2012) 42– 46.

DOI: 10.1016/j.porgcoat.2011.08.018

Google Scholar

[51] M. G. Hosseini, M. Jafari, R. Najjar, Effect of polyaniline–montmorillonite nanocomposite powders addition on corrosion performance of epoxy coatings on Al 5000, Surface Coat. Technol. 206 (2011) 280–286.

DOI: 10.1016/j.surfcoat.2011.07.012

Google Scholar

[52] R. David, S.P. Tambe, S.K. Singh, V.S. Raja, D. Kumar, Thermally sprayable grafted LDPE/nanoclay composite coating for corrosion protection, Surface Coat. Technol. 205 (2011) 5470–5477.

DOI: 10.1016/j.surfcoat.2011.06.022

Google Scholar

[53] N. Wang, K. Cheng, H. Wu, C. Wang, Q. Wang, F. Wang, Effect of nano-sized mesoporous silica MCM-41 and MMT on corrosion properties of epoxy coating, Prog. Org. Coat. 75 (2012) 386– 391.

DOI: 10.1016/j.porgcoat.2012.07.009

Google Scholar

[54] S. Ashhari, A. A. Sarabi, S. M. Kasiriha, D. Zaarei, Aliphatic polyurethane- montmorillonite nanocomposite coatings: Preparation, characterization, and anticorrosive properties. Appl. Polym. Sci., 119 (2011) 523–529.

DOI: 10.1002/app.32656

Google Scholar

[55] M. R. Bagherzadeh, F. Mahdavi, Preparation of epoxy–clay nanocomposite and investigation on its anti-corrosive behavior in epoxy coating. Prog. Org. Coat., 60 (2007) 117–120.

DOI: 10.1016/j.porgcoat.2007.07.011

Google Scholar

[56] M. Heidariana, M. R. Shishesaza, S. M. Kassiriha, M. Nematollahia, Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultrasonication assisted process. Prog. Org. Coat., 68 (2010) 180–188.

DOI: 10.1016/j.porgcoat.2010.02.006

Google Scholar

[57] M. Nematollahi, M. Heidarian, M. Peikari, S. M. Kassiriha, N. Arianpouya, M. Esmaeilpour, Comparison Between the effect of nanoglass flake and montmorillonite organoclay on corrosion performance of epoxy coating. Corros. Sci., 52 (2010) 1809–1817.

DOI: 10.1016/j.corsci.2010.01.024

Google Scholar

[58] E. Darmiani, I. Danaee, G. R. Rashed, D. Zaarei, Formulation and study of corrosion prevention behaviour of epoxy cerium nitrate–montmorillonite nanocomposite coated carbon steel, J. Coat. Technol. Res. (2013).

DOI: 10.1007/s11998-012-9463-1

Google Scholar

[59] E. Abdullayev, D. Shchukin and Y. Lvov, Halloysite clay nanotubes as nanoreservoirs for corrosion inhibitors and template for layer-by-layer encapsulation, Polym. Mater. Sci. & Eng. 99 (2008) 331-332.

Google Scholar

[60] Y. Lvov, D. Shchukin, H.Mohwald and R. Price, Halloysite clay nanotubes for controlled release of protective agents, ACS Nano 2 (2008) 814-820.

DOI: 10.1021/nn800259q

Google Scholar

[61] V. Vergaro, E. Abdullayev, Y. Lvov, A. Zeitoun, R. Cingolani and S. Leporatti, Cytocompatibility and Uptake of Halloysite Clay Nanotubes, Biomacromolecules, 11 (2010) 820-826.

DOI: 10.1021/bm9014446

Google Scholar

[62] M. Du, B. Guo, Y. Lei, M. Liu and D. Jia Carboxylated butadiene–styrene rubber/ halloysite nanotube nanocomposites: Interfacial interaction and performance, Polymer, 49 (2008) 4871-4876.

DOI: 10.1016/j.polymer.2008.08.042

Google Scholar

[63] M Du, B Guo, D Jia, Newly emerging applications of halloysite nanotubes: A review, Polymer I. 59 (2010) 574-582.

DOI: 10.1002/pi.2754

Google Scholar

[64] P. Pasbakhsh, H. Ismail, M. N. Ahmad Fauzi and A. Abu bakar EPDM/modified halloysite nanotube, Apllied Clay Sci, 48 (2010) 405-413.

DOI: 10.1016/j.clay.2010.01.015

Google Scholar

[65] E. Abdullayev, Y. Lvov, Clay nanotubes for corrosion inhibitor encapsulation: release control with end Stoppers, J. Mater. Chem., 20 (2010), 6681–6687

DOI: 10.1039/c0jm00810a

Google Scholar