Effect of the Working Diameter to the Surface Quality in Free-Form Surface Milling

Article Preview

Abstract:

The article presents the changing of the working diameter (effective diameter) and its effect to the surface roughness based on milling experiments of a test part in 3D milling of free-form surfaces. The position of the surface and the step depth determine the effective diameter, in case of constant revolution of the tool, the actual cutting speed and the minimal removable chip thickness will change. The article presents the result of the application of the constant cutting speed and feed per tooth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

372-377

Citation:

Online since:

October 2013

Export:

Price:

[1] Kundrák J., Gyáni K., Bana V.: Roughness of ground and hard-turned surfaces on the basis of 3D parameters Int J of Advanced Manufacturing Technology Vol. 38 Is. 1-2 pp.110-119 DOI: 10. 1007/s00170-007-1086-9 Published: (2008).

DOI: 10.1007/s00170-007-1086-9

Google Scholar

[2] Kundrák J., A. G. Mamalis, Gyáni K., Bana V.: Surface layer microhardness changes with high-speed, The Int J of Advanced Manufacturing Technology: Volume 53, Issue 1-4 (2011), pp.105-112 DOI: 10. 1007/s00170-010-2840-y.

DOI: 10.1007/s00170-010-2840-y

Google Scholar

[3] Y-C. Tsai, J-M Hsieh: A study of a design and NC manufacturing model of ball-end cutters; J of Materials Processing Technology, Vol. 117 2001 pp.183-192.

DOI: 10.1016/s0924-0136(01)01068-8

Google Scholar

[4] Y. Mizugaki, M. Hao, K. Kikkawa: Geometric generating mechanism of machined surface by ball-nosed end mill; CIRP Annals – Manufacturing Technology, 50(1) 2001 pp.69-72.

DOI: 10.1016/s0007-8506(07)62073-3

Google Scholar

[5] J-S. Chen, Y-K. Huang, M-S. Chen: A study of the surface scallop generating mechanism in ball-end milling process; Int J Machine Tool and Manufacture, vol. 45 2005 pp.1077-1084.

DOI: 10.1016/j.ijmachtools.2004.11.019

Google Scholar

[6] Buj-Corral, J. Vivancos-Calvet, A. Domínguez-Fernández: Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut; Int J Machine Tools and Manufacturie, Vol. 53 No. 1 2012 pp.151-159.

DOI: 10.1016/j.ijmachtools.2011.10.006

Google Scholar

[7] Y. Quinsat, L. Sabourin, C. Lartigue: Surface topography in ball end milling process: Description of a 3D surface roughness parameter; J of Materials Processing Technology, Vol. 195 2008 pp.135-143.

DOI: 10.1016/j.jmatprotec.2007.04.129

Google Scholar

[8] T. Chen, P. Ye: A tool path generation strategy for sculptured surface machining; J of Materials Processing Technology, Vol. 127 2002 pp.369-373.

DOI: 10.1016/s0924-0136(02)00408-9

Google Scholar

[9] C.K. Toh: A study of the effects of cutter path strategies and orientations in milling; J of Materials Processing Technology, Vol. 152 2004 pp.346-356.

DOI: 10.1016/j.jmatprotec.2004.04.382

Google Scholar

[10] E.M. Lim, C-H. Menq: Integrated planning for prediction machining of complex surfaces. Part 1: Cutting-path and feedrate optimization; Int J Machine Tools and Manufacture, Vol. 37 No. 1 1997 pp.61-75.

DOI: 10.1016/0890-6955(95)00109-3

Google Scholar

[11] G. Sun, P. Wright: Simulation-based cutting parameter selection for ball end milling; J of Manufacturing Systems, Vol. 24 No. 4 2005 pp.352-365.

DOI: 10.1016/s0278-6125(05)80019-6

Google Scholar

[12] R. Salami, M.H. Sadeghi, B. Motakef: Feed rate optimization for 3-axis ball-end milling of sculptured surfaces; Int J Machine Tool and Manufacture, vol. 47 2007 pp.760-767.

DOI: 10.1016/j.ijmachtools.2006.09.011

Google Scholar

[13] Mikó B., J. Beňo, P. Izol, I. Maňková: Surface quality of sculpture surface in case of 3D milling; 8th Int. Tool Conf. ITC2011. Zlin Cz 2011. CD proceeding; ISBN: 978-80. 7454-026-4.

Google Scholar