Luminescence Behavior of Tm3+ Activated GdAlO3 Phosphors Synthesized Using Solid-Reaction Method

Article Preview

Abstract:

Trivalent thulium ions (Tm3+) doped GdAlO3 (Gd1-xTmxAlO3) phosphors which show a blue luminescence of high color purity have been synthesized by using solid-state reaction method starting from nanosized powders. X-ray diffraction (XRD) measurements were used to analyze the phase transformations that take place during the preparation of the phosphors. The morphologies of the powders calcined at different temperatures were studied by using scanning electron microscopy (SEM). The luminescence properties of the compounds were investigated. Pure phase of orthorhombic type GdAlO3 (GAP) was yielded by calcining the phosphors at 1200°C for 8 h. The PL spectra showed representative Tm3+ emission. The strong band centered at ~488 nm and the weak one centered at 697 nm were attributed to the 1D2-3F4 and 1G4-3F4 transitions of Tm3+, respectively. The quenching concentration of Tm3+ was estimated to be ~0.75at.% (x=0.0075), for which can be ascribed to the exchange interactions. The decay curve was fitted to be a single exponent and the estimated fluorescent lifetime of the GdAlO3:Tm3+ phosphor was 1.73±0.08 ms.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

32-37

Citation:

Online since:

March 2014

Export:

Price:

* - Corresponding Author

[1] S. Chaudhury, S.C. Parida, K.T. Pillai, K.D. Singh Mudher, High-temperature X-ray diffraction and specific heat studies on GdAlO3, Gd3Al5O12 and Gd4Al2O9, J. Solid State Chem. 180 (2007) 2393-2399.

DOI: 10.1016/j.jssc.2007.06.003

Google Scholar

[2] G. Seeta Rama Raju, H.C. Jung, J.Y. Park, C.M. Kanamadi, B.K. Moon, J.H. Jeong, S. -M. Son, J.H. Kim, Synthesis and luminescent properties of Dy3+: GAG nanophosphors, J. Alloys Compd. 481 (2009) 730-734.

DOI: 10.1016/j.jallcom.2009.03.095

Google Scholar

[3] G. Seeta Rama Raju, J.Y. Park, H.C. Jung, H.K. Yang, B.K. Moon, J.H. Jeong, J.H. Kim, Synthesis and luminescence properties of low concentration Dy3+: GAP nanophosphors, Opt. Mater. 31 (2009) 1210-1214.

DOI: 10.1016/j.optmat.2008.12.015

Google Scholar

[4] Xiaodong Li, Ji-Guang Li, Zhimeng Xiu, Di Huo, Xudong Sun, Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics, J. Am. Ceram. Soc. 93 (2010) 2229–2235.

DOI: 10.1111/j.1551-2916.2010.03726.x

Google Scholar

[5] Zhang K, Liu H Z, Wu Y T, Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG: Ce) phosphor: The effect of precipitant, J. Alloy. Compd. 453 (2008) 265-270.

DOI: 10.1016/j.jallcom.2006.11.101

Google Scholar

[6] M. J. Jackson, W. O'Neill, J. Mater, Laser micro-drilling of tool steel using Nd: YAG laser, J. Mater. Proc. Technol. 42 (2003) 517–525.

Google Scholar

[7] D. Jia, Y. Wang, X. Guo, K. Li, Y.K. Zou, W. Jia, Synthesis and characterization of YAG: Ce3+ LED nanophosphors, J. Electrochem. Soc. 154 (2007) J1-J4.

DOI: 10.1149/1.2372589

Google Scholar

[8] F. Yuan, H. Ryu, Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation, Mater. Sci. Eng. B. 107 (2004) 14-18.

DOI: 10.1016/j.mseb.2003.10.002

Google Scholar

[9] J.Y. Choe, D. Ravichandran, S.M. Blomquist, K.W. Kirchner, E.W. Forsythe, D.C. Morton, Cathodoluminescence study of novel sol-gel derived Y3-xAl5O12: Tbx phosphors, J. Lumin. 93 (2001) 119-128.

DOI: 10.1016/s0022-2313(01)00178-8

Google Scholar

[10] Amit Sinha, S.R. Nair, P.K. Sinha, Single step synthesis of GdAlO3 powder, J. Alloy. Compd. 509 (2011) 4774–4780.

DOI: 10.1016/j.jallcom.2011.01.156

Google Scholar

[11] X. Li, H. Liu, J. Wang, H. Cui, F. Han, YAG: Ce nano-sized phosphor particles prepared by a solvothermal method, Mater. Res. Bull. 39 (2004) 1923-(1930).

DOI: 10.1016/j.materresbull.2004.05.013

Google Scholar

[12] Y.C. Kang, Y.S. Chung, S.B. Park, Preparation of YAG: Europium Red Phosphors by Spray Pyrolysis Using a Filter-Expansion Aerosol Generator, J. Am. Ceram. Soc. 82 (1999) 2056-(2060).

DOI: 10.1111/j.1151-2916.1999.tb02040.x

Google Scholar

[13] P. Haro-Gomzalez, I. R. Martin, Increase of the blue upconversion emission in YAG: Tm3+ nanopowders by codoping with Yb3+ ions, J. Lumin. 128 (2008) 924–926.

DOI: 10.1016/j.jlumin.2007.11.033

Google Scholar

[14] J. -G. Li, T. Ikegami, J.H. Lee, and T. Mori, Well-Sinterable Y3Al5O12 Powder from Carbonate Precursor, J. Mater. Res. 15 (2000) 1514–1523.

DOI: 10.1557/jmr.2000.0217

Google Scholar

[15] J.W.M. Verweij, M. Th. Cohen-Adad, D. Bouttet, H. Lautesse, B. Moine, C. Prdrini, Luminescence properties of GdAIO3: Ce powders, Chem. Phys. Lett. 239 (1995) 51-55.

DOI: 10.1016/0009-2614(95)00439-b

Google Scholar

[16] Jinkai Li, Ji-Guang Li, Zhongjie Zhang, Xiaoli Wu, Shaohong Liu, Xiaodong Li, Xudong Sun, Yoshio Sakka, Gadolinium Aluminate Garnet (Gd3Al5O12 ): Crystal Structure Stabilization via Lutetium Doping and Properties of the (Gd1-xLux)3Al5O12 Solid Solutions (x = 0–0. 5), J. Am. Ceram. Soc. 95 (2012).

DOI: 10.1111/j.1551-2916.2011.04991.x

Google Scholar

[17] Ji-Guang Li, J. -H. Lee, T. Mori, Y. Yajima, S. Takenouchi, and T. Ikegami, Crystal Phase and Sinterability of Wet-Chemically Derived YAG Powders, J. Ceram. Soc. Jpn. 108 (2000) 439–444.

DOI: 10.2109/jcersj.108.1257_439

Google Scholar

[18] Jinkai Li, Ji-Guang Li, Xiaoli Wu, Shaohong Liu, Xiaodong Li, Xudong Sun, Crystal Structure Stabilization of Gadolinium Aluminum Garnet (Gd3Al5O12 ) and Photoluminescence Properties, Key Engineering Materials. 544 (2013) 245-251.

DOI: 10.4028/www.scientific.net/kem.544.245

Google Scholar

[19] D. Boulay, N. Ishizawa, E.N. Maslen, GdAlO3 perovskite, Acta Cryst. C60 (2004) i120.

Google Scholar

[20] S. Kammoun, M. Kamoun, Crystal-Field analysis of the Ce3+ spectrum in YAlO3 single crystals, Phys. Stat. Sol. (b) 229 (2002) 1321-1327.

DOI: 10.1002/1521-3951(200202)229:3<1321::aid-pssb1321>3.0.co;2-5

Google Scholar

[21] G. Seeta Rama Raju, J.Y. Park, H.C. Jung, B.K. Moon, J.H. Jeong, J.H. Kim, Luminescence properties of Dy3+: GdAlO3 nanopowder phosphors, Curr. Appl. Phys. 9 (2009) e92–e95.

DOI: 10.1016/j.cap.2008.12.037

Google Scholar

[22] Meltzer R S, Feofilov S P, Tissue B and Yuan H B, Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium, Phys. Rev. B. 60 (1999) 14012.

Google Scholar

[23] Christensen H P, Gabbe D Rand Jenssen H P, Fluorescence lifetimes for neodymium-doped yttrium aluminum garret and yttrium oxide powders, Phys. Rev. B. 25 (1982) 1467.

DOI: 10.1103/physrevb.25.1467

Google Scholar