A New Process Chain for Joining Sheet Metal to Fibre Composite Sheets

Article Preview

Abstract:

Mixed-Materials parts have great light-weight potential for the automotive application to reduce the carbon footprint. But the joining of fibre composite plastic sheets to metal sheets is in practical application limited to adhesive bonding or mechanical joining with additional fastener elements due to the large differences in physical properties. A new process chain based on plastic joining without fastener elements is proposed and first results on the mechanism and on the achievable strength of the new joints are shown. The process chain consists of three steps: First joining pins are added to the sheet metal by an additive manufacturing process. In a second step these pins are pierced through the fibre composite sheet with a local heating of the thermoplastic in an overlap setup. In the third and last step the joint is created by forming the pins with the upsetting process to create a shape lock. The shear strength of the joined specimens was tested in a tensile testing machine. The paper shows that even with a non-optimized initial setup joints can be realised and that the new process chain is a possible alternative to adhesive bonding.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1468-1475

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] I.A. Ashcroft, D.J. Hughes and S.J. Shaw, Adhesive bonding of fibre reinforced polymer composite materials, Assembly Automation 20 (2000) 2, pp.150-161.

DOI: 10.1108/01445150010321797

Google Scholar

[2] S.D. Thoppul, J. Finegan and R.F. Gibson, Mechanics of mechanically fastened joints in polymer-matrix composite structures – A review, Composite Science and Technology 69 (2009), pp.301-329.

DOI: 10.1016/j.compscitech.2008.09.037

Google Scholar

[3] P. Molitor, V. Barron and T. Young, Surface treatment of titanium for adhesive bonding to polymer composites: a review, International Journal of Adhesion and Adhesives 21 (2001) 2, pp.129-136.

DOI: 10.1016/s0143-7496(00)00044-0

Google Scholar

[4] S. Ucsnik, M. Scheerer, S. Zaremba and D.H. Pahr, Experimental investigation of a novel hybrid metal-composite joining technology, Composites: Part A 41 (2010), pp.369-374.

DOI: 10.1016/j.compositesa.2009.11.003

Google Scholar

[5] D. Drummer and T. Müller, Thermoplastische Hochleistungsfaserverbunde stehen vor einer großen Renaissance, Intelligenter Produzieren 3 (2010), pp.6-8.

Google Scholar

[6] K. Friedrich and M. Hou, On stamp forming of curved and flexible geometry components from continuous glass fiber/polypropylene composites, Composites Part A: Applied Science and Manufacturing 29 (1998) 3, pp.217-226.

DOI: 10.1016/s1359-835x(97)00087-0

Google Scholar

[7] M. Hou, Stamp forming of continuous glass fibre reinforced polypropylene, Composites Part A: Applied Science and Manufacturing 28 (1997) 8, pp.695-702.

DOI: 10.1016/s1359-835x(97)00013-4

Google Scholar

[8] G.B. McGuinness and C.M. ÓBrádaigh, Characterisation of thermoplastic composite melts in rhombus-shear: the picture-frame experiment, Composites Part A: Applied Science and Manufacturing 29 (1998) 1–2, pp.115-132.

DOI: 10.1016/s1359-835x(97)00061-4

Google Scholar

[9] S. R. Morris and C. T. Sun, Analysis of forming loads for thermoplastic composite laminates, Composites Part A: Applied Science and Manufacturing 27 (1996) 8, pp.633-640.

DOI: 10.1016/1359-835x(96)00031-0

Google Scholar

[10] R. Lahr, Partielles Thermoformen endlosfaserverstärkter Thermoplaste, dissertation, Institut für Verbundwerkstoffe, Technische Universität Kaiserslautern, Kaiserslautern, (2007).

DOI: 10.58286/26620

Google Scholar

[11] H. Seidlitz, L. Kroll and L. Ulke-Winter, Kraftflussgerechte Punktverbindungen, Kunstoffe 3 (2011), pp.50-53.

Google Scholar

[12] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina and R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, Journal of Materials Science & Technology 28 (2012).

DOI: 10.1016/s1005-0302(12)60016-4

Google Scholar

[13] S. Kaierle, A. Barroi, C. Noelke, J. Hermsdorf, L. Overmeyer and H. Haferkamp, Review on Laser Deposition Welding: From Micro to Macro, Physics Procedia 39 (2012), pp.336-345.

DOI: 10.1016/j.phpro.2012.10.046

Google Scholar

[14] http: /www. ifw-dresden. de/userfiles/legacy/institutes/ikm/research/metallische-glaser-und-komposite/laserstrahlschmelzen/institutes/ikm/research/metallische-glaser-und-komposite/ laserstrahlschmelzen/maschine-de-en/slm-prinzip_engl. png/image; accessed January 13th, (2014).

Google Scholar