Identification of the Modal Properties of a Building of the Greek Heritage

Article Preview

Abstract:

In this paper, the experimental modal identification analysis of the public building “San Giacomo” in Corfu (Greece) is illustrated. It represents the unique example of a structure built utilising carves stones inside the city of Corfu. The building has a rectangular plan shape with dimensions 24.75 x 14 m, and height 9 m; all the floors are made by wood. The monitoring system consists of several elements properly connected: the units of acquisitions or piezoelectric accelerometers (in total 18 installed on the different walls) with a sensitivity of 1000 mV/g; the data acquisition system or DAQs positioned at each monitored level; the laptop with an acquisition software; the cables that connect all elements to each other. The paper describes the phases of the investigations, the technical details of the performed in-situ tests, the first identified frequencies of the building by means of the classical methods of Operational Modal Analysis (OMA) and the comments about the acquired data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-159

Citation:

Online since:

August 2014

Export:

Price:

* - Corresponding Author

[1] J. M. Kelly, S. M. Takhirov, Analytical and experimental study of fiber-reinforced strip isolators, Pacific Earthquake Engineering Research Report 2002, 11 (2002).

Google Scholar

[2] A. De Luca, E. Mele, J. Molina, G. Verzeletti, A.V. Pinto, The Retrofit of Historic Buildings Through Seismic Isolation: Results of Pseudo-Dynamic Tests on a Full Scale Specimen, Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January - 4 February 2000 (2000).

DOI: 10.1002/eqe.54

Google Scholar

[3] A. Castellano, P. Foti, A. Fraddosio, S. Marzano, G. Mininno, M.D. Piccioni, Seismic Response of a Historic Masonry Construction Isolated by Stable Unbonded Fiber-Reinforced Elastomeric Isolators (SU-FREI), Key Engineering Materials (2014).

DOI: 10.4028/www.scientific.net/kem.628.160

Google Scholar

[4] M. Diaferio, D. Foti, V. Sepe, Dynamic Identification of the Tower of the Provincial Administration Building, Bari, Italy. In: Proc. of the Eleventh International Conference on Civil, Structural and Environmental Engineering Computing, Malta, 18-21 Sept. 2007, paper n. 2 (2007).

DOI: 10.4203/ccp.86.2

Google Scholar

[5] D. Foti, M. Diaferio, M. Mongelli, N.I. Giannoccaro, P. Andersen, Operational Modal Analysis of a Historical Tower in Bari. Proc. of the Society for Experimental Mechanics Series, IMAC XXIX, Jacksonville, Florida, USA, 335-342 (2011).

DOI: 10.1007/978-1-4419-9316-8_31

Google Scholar

[6] M. Lepidi, V. Gattulli, D. Foti, Swinging-bell resonances and their cancellation identified by dynamical testing in a modern bell tower. Engineering Structures, Elsevier 31 (2009) 7, 1486–1500.

DOI: 10.1016/j.engstruct.2009.02.014

Google Scholar

[7] B. Peeters, G. De Roeck, Stochastic system identification for operational modal analysis: A review. ASME Journal of Dynamic Systems, Measurement, and Control. 123 (2001) 4, 659-667.

DOI: 10.1115/1.1410370

Google Scholar

[8] D. Foti, Dynamic identification techniques to numerically detect the structural damage. The Open Construction and Building Technology Journal, 7 (2013), 43-50. ISSN 1874-8368, doi 10. 2174/1874836801307010043.

DOI: 10.2174/1874836801307010043

Google Scholar

[9] D. Foti, V. Gattulli, F. Potenza, Output-only identification and model updating by dynamic testing in unfavorable conditions of a seismically damaged building. Computer-Aided Civil and Infrastructure Engineering, February (2014).

DOI: 10.1111/mice.12071

Google Scholar

[10] C. Rainieri, G. Fabbrocino, Automated output-only dynamic identification of civil engineering structures. Mechanical Systems and Signal Processing. 24 (2010), 678-695.

DOI: 10.1016/j.ymssp.2009.10.003

Google Scholar

[11] D. Foti, S. Ivorra, D. Bru, G. Dimaggio, Dynamic Identification of a Pedestrian Bridge using OMA: Previous and Post-Reinforcing. In: B.H.V. Topping, (Editor). Proc. of the Eleventh International Conference on Computational Structures Technology, Dubrovnik, 4-7 Sept. (2012).

DOI: 10.4203/ccp.99.180

Google Scholar

[12] D. Foti, S. Ivorra, M.F. Sabbà, Dynamic Investigation of an Ancient Bell Tower with Operational Modal Analysis. The Open Construction and Building Technology Journal, 6 (2012), 384-391.

DOI: 10.2174/1874836801206010384

Google Scholar

[13] C. Gentile, A. Saisi, Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials, 21(2007), 1311–1321.

DOI: 10.1016/j.conbuildmat.2006.01.007

Google Scholar

[14] S. Ivorra, F.J. Pallares, Dynamic investigations on a masonry bell tower. Engineering Structures, 28 (2006) 5, 660–667.

DOI: 10.1016/j.engstruct.2005.09.019

Google Scholar

[15] M. Diaferio, Dynamic analysis of a historical fortified tower, Key Engineering Materials (2014).

Google Scholar

[16] T. Trombetti, S. Silvestri, G. Gasparini, M. Palermo, G. Dallavalle, Monitoring the structural health of the Due Torri" in Bologna. Proc. of the XX Congresso dell, Associazione Italiana di Meccanica Teorica e Applicata Bologna AIMETA, Bologna (Italy), (2011).

DOI: 10.5176/2301-394x_ace17.92

Google Scholar

[17] D. Foti, M. Diaferio, N.I. Giannoccaro, M. Mongelli, Ambient vibration testing, dynamic identification and model updating of a historic tower. NDT & E International, 47 (2012), 88-95.

DOI: 10.1016/j.ndteint.2011.11.009

Google Scholar

[18] D. Foti, Identification of the modal properties of a Medieval tower next to a landslide, in press in: Proc International Forum Le Vie dei Mercanti", Editor La Scuola di Pitagora, in "Fabbrica della Conoscenza, 12-14 June 2014, ID 184.

Google Scholar

[19] M. Diaferio, D. Foti, N.I. Giannoccaro, Non-Destructive Monitoring of an Old Masonry Clock Tower with Forced and Environmental Actions, in press in: Proc International Forum Le Vie dei Mercanti", Editor La Scuola di Pitagora, in "Fabbrica della Conoscenza, 12-14 June 2014, ID 111.

DOI: 10.1109/eesms.2014.6923265

Google Scholar

[20] I. Valente, L.F. Ramos, K. Vasquez, P. Guimaräes, P.B. Lourenço, Non-destructive tests for the structural assessment of a historical bridge over the Tua River, Key Engineering Materials 569-570 (2013) 390-397.

DOI: 10.4028/www.scientific.net/kem.569-570.390

Google Scholar

[21] A. Castellano, P. Foti, A. Fraddosio, S. Marzano, M.D. Piccioni, Mechanical Characterization of CFRP Composites by Ultrasonic Immersion Tests: Experimental and Numerical Approaches, Composites Part B, DOI 10. 1016/j. compositesb. 2014. 04. 024 (2014).

DOI: 10.1016/j.compositesb.2014.04.024

Google Scholar

[22] A. Castellano, P. Foti, A. Fraddosio, S. Marzano, M.D. Piccioni, Mechanical characterization of Apricena marble by ultrasonic immersion tests, Key Engineering Materials (2014).

DOI: 10.4028/www.scientific.net/kem.628.109

Google Scholar

[23] S. Gade, N. B. Møller, H. Herlufsen, H. Konstantin-Hansen, Frequency domain techniques for operational modal analysis, Proc. of the 1st International Operational Modal Analysis Conference (2005).

Google Scholar

[24] M. Batel, Operational modal analysis - another way of doing modal testing, submitted to Journal of Sound and Vibration, (2009).

Google Scholar

[25] P. Van Overschee, B. De Moor, Subspace identification for linear systems: theory-implementation- applications. Kluwer Academic Publishers, (1996).

DOI: 10.1007/978-1-4613-0465-4_6

Google Scholar

[26] ARTeMIS Extractor Pro software. Issued by Structural Vibration Solutions ApS. NOVI Science Park, Niels Jernes Vej 10, DK 9220 Aalborg East, Denmark; (2013).

DOI: 10.52547/ijmcl.4.1.9

Google Scholar