Short Review on Rare Earth and Metalloid Oxide Additions to MgB2 as a Candidate Superconducting Material for Medical Applications

Article Preview

Abstract:

MgB2 is a candidate for the fabrication of magnetic coils used in medical applications. Our review indicate that oxide additions based on the rare earth or metalloid elements show improvement of the MgB2 critical current density (Jc) and the irreversible magnetic field (Hirr) without significantly affecting the critical temperature (Tc) However, the characteristics of the additions and the technological approaches show a strong influence in controlling superconducting properties. Both additions and the technology need a careful and complex optimization in order to enhance the Jc and Hirr.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

357-362

Citation:

Online since:

March 2015

Export:

Price:

* - Corresponding Author

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410 (2001) 63-64.

DOI: 10.1038/35065039

Google Scholar

[2] C. Del Gratta, S.D. Penna, V. Pizzella, G.L. Romani, Medical applications of magnetoencelography, in: H. Rogalla, P.H. Kes (Eds. ), 100 years of superconductivity. CRC Press, Boca Raton, 2012, pp.562-581.

Google Scholar

[3] R. Fenici, D. Brisinda, A.R. Sorbo, A. Venuti, MCG Instrumentation and applications, in: H. Rogalla, P.H. Kes (Eds. ), 100 years of superconductivity. CRC Press, Boca Raton, 2012, pp.582-601.

Google Scholar

[4] J. Heinzerling. New developments in nuclear magnetic resonance (NMR) imaging. Neurosurg. Rev. 7 (1984) 281-286.

DOI: 10.1007/bf01892908

Google Scholar

[5] J. Bray, K. Amm, MRI (Magnetic Resonance Imaging) instrumentation and applications, in: H. Rogalla, P.H. Kes (Eds. ), 100 years of superconductivity. CRC Press, Boca Raton, 2012, pp.602-609.

Google Scholar

[6] P.A. Zavodszky, Superconductivity in medical accelerators for cancer therapy, in: H. Rogalla, P.H. Kes (Eds. ), 100 years of superconductivity. CRC Press, Boca Raton, 2012, pp.619-624.

DOI: 10.1063/pt.3.1645

Google Scholar

[7] J. Clarke, Ultralow field NMR and MRI, in: H. Rogalla, P.H. Kes (Eds. ), 100 years of superconductivity. CRC Press, Boca Raton, 2012, pp.610-618.

Google Scholar

[8] Z. Mori, T. Doi, Y. Hakuraku, H. Kitaguchi, Enhancement of Jc of MgB2 thin films by introduction of oxygen deposition, Physica C 445-448 (2006) 880-883.

DOI: 10.1016/j.physc.2006.05.051

Google Scholar

[9] R.K. Singh, Y. Shen, R. Gandikota, C. Carvalho, J.M. Rowell, N. Newman, Effect of oxygen incorporation on normal and superconducting properties of MgB2 films, Appl. Phys. Lett. 93 (2008) 242504: 1-3.

DOI: 10.1063/1.3049618

Google Scholar

[10] S. Wang, W. Yu, G. Fu, Improvement of the high-magnetic-field critical current density of the ex-situ annealed MgB2 thick films by oxygen doping, J. Supercond. Nov. Magn. 21 (2008) 427-430.

DOI: 10.1007/s10948-008-0353-9

Google Scholar

[11] Y. Kimishima, M. Uehara, T. Kuramoti, S. Takano, S. Takami,  La-doping effects on pinning properties of MgB2. Physica C 412-414 (2004) 402-406.

DOI: 10.1016/j.physc.2004.01.061

Google Scholar

[12] C. Shekhar, R. Giri, R.S. Tiwari, O.N. Srivastava, On the synthesis and characterization of La doped MgB2 superconductor, Cryst. Res. Technol. 39 (2004) 718-725.

DOI: 10.1002/crat.200310244

Google Scholar

[13] C. Shekhar, R. Giri, R.S. Tiwari, D.S. Rana, S.K. Malik, O.N. Srivastava, Effect of La doping on microstructure and critical current density of MgB2. Supercond. Sci. Tech. 18 (2005) 1210-1214.

DOI: 10.1088/0953-2048/18/9/011

Google Scholar

[14] X.F. Pan, C.H. Cheng, Y. Zhao, Effect of rare-earth oxides doping on superconductivity and flux pinning of MgB2 superconductor, J. Supercond. Nov. Magn. 24 (2011) 1611-1616.

DOI: 10.1007/s10948-010-1066-4

Google Scholar

[15] X.F. Pan, T.M. Shen, G. Li, C.H. Cheng, Y. Zhao, Doping effect of Pr6O11 on superconductivity and flux pinning of MgB2 bulk. Phys. Status Solidi A 204 (2007) 1555-1560.

DOI: 10.1002/pssa.200622505

Google Scholar

[16] N. Ojha, G.D. Varma, H.K. Singh, V.P.S. Awana, Effect of rare earth doping on the superconducting properties of MgB2. J. Appl. Phys. 105 (2009) 07E315: 1-3.

DOI: 10.1063/1.3072379

Google Scholar

[17] N. Ojha, V.K. Malik, C. Bernhard, G.D. Varma, The effect of Pr6O11 doping on superconducting properties of MgB2, Phys. Status Solidi A 207 (2010) 175-182.

DOI: 10.1002/pssa.200925180

Google Scholar

[18] N. Ojha, V.K. Malik, R. Singla, C. Bernhard, G.D. Varma, The effect of carbon and rare earth oxide co-doping on the structural and superconducting properties of MgB2. Supercond. Sci. Tech. 23 (2010) 045005: 1-9.

DOI: 10.1088/0953-2048/23/4/045005

Google Scholar

[19] N. Ojha, V.K. Malik, C. Bernhard, G.D. Varma, Enhanced superconducting properties of Eu2O3 doped MgB2, Physica C 469 (2009) 846-851.

DOI: 10.1016/j.physc.2009.05.014

Google Scholar

[20] S.K. Chen, M. Wei, J.L. MacManus-Driscoll, Strong pinning enhancement in MgB2 using very small Dy2O3 additions, Appl. Phys. Lett. 88 (2006), 192512: 1-3.

DOI: 10.1063/1.2203209

Google Scholar

[21] P. Mikheenko, S.K. Chen, J.L. MacManus-Driscoll, Minute pinning and doping additions for strong, 20 K, in-field critical current improvement in MgB2, Appl. Phys. Lett. 91 (2007) 202508: 1-3.

DOI: 10.1063/1.2814060

Google Scholar

[22] C. Cheng, Y. Zhao, Enhancement of critical current density of MgB2 by doping Ho2O3, Appl. Phys. Lett. 89 (2006) 252501: 1-3.

DOI: 10.1063/1.2409368

Google Scholar

[23] C. Cheng, Y. Zhao, Significant improvement of flux pinning and irreversibility field of nano-Ho2O3 doped MgB2, Physica C 463-465 (2007) 220-224.

DOI: 10.1016/j.physc.2007.04.280

Google Scholar

[24] N. Varghese, K. Vinod, M.K. Chattopadhyay, S.B. Roy, U. Syamaprasad, Effect of combined addition of nano-SiC and nano-Ho2O3 on the in-field critical current density of MgB2 superconductor, J. Appl. Phys. 107 (2010) 013907: 1-5.

DOI: 10.1063/1.3275504

Google Scholar

[25] K. Vinod, N. Varghese, A. Sundaresan, U. Syamaprasad, Highly enhanced in-field critical current density of MgB2 superconductor by combined addition of burned rice husk and nano Ho2O3, Solid State Sci. 12 (2010) 610-616.

DOI: 10.1016/j.solidstatesciences.2010.01.012

Google Scholar

[26] G. Aldica, S. Popa, M. Enculescu, D. Batalu, L. Miu, M. Ferbinteanu, P. Badica, Addition of Ho2O3 of different types to MgB2 in the ex-situ spark plasma sintering: simultaneous control of the critical current density at low and high magnetic fields, Mater. Chem. Phys. 146 (2014).

DOI: 10.1016/j.matchemphys.2014.03.030

Google Scholar

[27] S. Agrestini, C. Metallo, M. Filippi, G. Campi, C. Sanipoli, S. De Negri, M. Giovannini, A. Saccone, A. Latini, A. Bianconi, Sc doping of MgB2: the structural and electronic properties of Mg1-xScxB2, J. Phys. Chem. Solids 65 (2004) 1479-1484.

DOI: 10.1016/j.jpcs.2003.09.033

Google Scholar

[28] S. Agrestini, C. Metallo, M. Filippi, L. Simonelli, G. Campi, C. Sanipoli, Substitution of Sc for Mg in MgB2: Effects on transition temperature and Kohn anomaly, Phys. Rev. B 70 (2004) 134514: 1-9.

Google Scholar

[29] M. Filippi, S. Agrestini, L. Simonelli, N.L. Saini, A. Bianconi, S. De Negri, M. Giovannini, A. Saccone, X-ray Absorption Near Edge Structure (XANES) microscopy of phase separation in superconducting Mg1-xScxB2, Spectrochim. Acta B 62 (2007).

DOI: 10.1016/j.sab.2007.03.027

Google Scholar

[30] J. Wang, Y. Bugoslavski , A. Berenov, L. Cowey, A.D. Capli, L. F Cohen, J.L. Mac Manus Driscoll, High critical current density and improved irreversibility field in bulk MgB2 made by a scaleable, nanoparticle addition route. Appl. Phys. Lett. 81 (2002).

DOI: 10.1063/1.1506184

Google Scholar

[31] Z. Gao, D. Wang, X. Zhang, Y. Ma, S. Awaji, G. Nishijima, K. Watanabe, R. Flukiger, Simultaneous introduction of scattering and pinning in organic rare-earth salt doped MgB2 tapes. Supercond. Sci. Tech. 23 (2010) 045024: 1-4.

DOI: 10.1088/0953-2048/23/4/045024

Google Scholar

[32] Y. Katsura, J. Shimoyama, A. Yamamoto, S. Horii, K. Kishio, Effects of rare earth doping on the superconducting properties of MgB2, Physica C 463-465 (2007) 225-228.

DOI: 10.1016/j.physc.2007.04.250

Google Scholar

[33] A. Matsumoto, H. Kumakura, H. Kitaguchi, H. Hatakeyama, Effect of SiO2 and SiC doping on the powder-in-tube processed MgB2 tapes, Supercond. Sci. Tech. 16 (2003) 926-930.

DOI: 10.1088/0953-2048/16/8/317

Google Scholar

[34] O. Perner, W. Häßler, J. Eckert, C. Fischer, C. Mickel, G. Fuchs, B. Holzapfel, L. Schultz, Effects of oxide particle addition on superconductivity in nanocrystalline MgB2 bulk samples, Physica C 432 (2005) 15-24.

DOI: 10.1016/j.physc.2005.07.005

Google Scholar

[35] D. Batalu, G. Aldica, S. Popa, L. Miu, M. Enculescu, R.F. Negrea, I. Pasuk, P. Badica, High magnetic field enhancement of the critical current density by Ge, GeO2 and Ge2C6H10O7 additions to MgB2, Scripta Mat. 82 (2014) 61-64.

DOI: 10.1016/j.scriptamat.2014.03.024

Google Scholar

[36] M. Burdusel, G. Aldica, S. Popa, M. Enculescu, P. Badica, MgB2 with addition of Sb2O3 obtained by spark plasma sintering technique, J. Mater. Sci. 47 (2012) 3828-3836.

DOI: 10.1007/s10853-011-6238-5

Google Scholar

[37] Y. Zhang, S.X. Dou, Influence of antimony trioxide nanoparticle doping on superconductivity in MgB2 bulk, J. Mater. Res. 26 (2011) 2701-2706.

DOI: 10.1557/jmr.2011.255

Google Scholar

[38] G. Aldica, S. Popa, M. Enculescu, P. Badica, Enhancement of critical density and irreversibility field by Te or TeO2 addition to MgB2 bulk processed by spark plasma sintering, Scripta Mat. 66 (2012) 570-573.

DOI: 10.1016/j.scriptamat.2012.01.006

Google Scholar

[39] G. Aldica, D. Batalu, S. Popa, I. Ivan, P. Nita, Y. Sakka, O. Vasylkiv, L. Miu, I. Pasuk, P. Badica, Spark plasma sintering of MgB2 in the two-temperature route, Physica C 477 (2012) 43-50.

DOI: 10.1016/j.physc.2012.01.023

Google Scholar

[40] C.E.J. Dancer, D. Prabhakaran, M. Basoglu, E. Yanmaz, H. Yan, M. Reece, R.I. Todd, C.R.M. Grovenor, Fabrication and properties of dense ex situ magnesium diboride bulk material synthesized using spark plasma sintering, Supercond. Sci. Technol. 22 (2009).

DOI: 10.1088/0953-2048/22/9/095003

Google Scholar