Experimental Verification of a Benchmark Forming Simulation

Article Preview

Abstract:

Forming of near-net-shaped and load-adapted functional components, as it is developed in the Transregional Collaborative Research Centre on Sheet-Bulk Metal Forming SFB/TR 73, causes different problems, which lead to non-optimal manufacturing results. For these high complex processes the prediction of forming effects can only be realized by simulations. A stamping process of pressing eight punches into a circular blank is chosen for the considered investigations. This reference process is designed to reflect the main aspects, which strongly affect the final outcome of forming processes. These are the orthotropic material behaviour, the optimal design of the initial blank and the influences of different contact and friction laws. The aim of this work is to verify the results of finite element computations for the proposed forming process by experiments. Evaluation methods are presented to detect the influence of the anisotropy and also to quantify the optimal blank design, which is determined by inverse form finding. The manufacturing accuracy of the die plate and the corresponding roughness data of the milled surface are analysed, whereas metrological investigations are required. This is accomplished by the help of advanced measurement techniques like a multi-sensor fringe projection system and a white light interferometer. Regarding the geometry of the punches, micromilling of the die plate is also a real challenge, especially due to the hardness of the high-speed steel ASP 2023 (approx. 63 HRC). The surface roughness of the workpiece before and after the forming process is evaluated to gain auxiliary data for enhancing the friction modelling and to characterise the contact behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-258

Citation:

Online since:

March 2015

Export:

Price:

* - Corresponding Author

[1] M. Merklein, J. M. Allwood, B. A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A. E. Tekkaya, A. Weckenmann, Bulk forming of sheet metal, in: CIRP Annals – Manufacturing Technology, Vol. 61, 2 (2012), 725-745.

DOI: 10.1016/j.cirp.2012.05.007

Google Scholar

[2] S. Schmaltz, P. Landkammer, F. Beyer, D. Kumor, A. Rademacher, H. Blum, P. Steinmann, K. Willner, Vorstellung eines Simulationsbenchmarks für die Blechmassivumformung, in: M. Merklein, B. -A. Behrens, A. E. Tekkaya (Eds. ), Tagungsband 2. Workshop Blechmassivumformung, 2013, 53-68.

Google Scholar

[3] P. Landkammer, P. Steinmann, A fast approach to shape optimisation by using the inverse fem, Key Engineering Materials, Vol. 611 (2014) 1404-1412.

DOI: 10.4028/www.scientific.net/kem.611-612.1404

Google Scholar

[4] U. Vierzigmann, T. Schneider, J. Koch et al., Untersuchung von Tailored Surfaces für die Blechmassivumformung mittels angepasstem Ringstauchversuch, in: M. Merklein, B. -A. Behrens, A. E. Tekkaya (Eds. ), Tagungsband 2. Workshop Blechmassivumformung, 2013, 137-162.

Google Scholar

[5] G. Bissacco, H. Hansen, L. De Chiffre, Micromilling of hardened tool steel for mould making applications, in: Journal of Materials Processing Technology Vol. 167 (2005), 201-207.

DOI: 10.1016/j.jmatprotec.2005.05.029

Google Scholar

[6] D. Biermann, A. Baschin, E. Krebs, J. Schlenker, Manufacturing of dies from hardened tool steels by 3-axis micromilling, in: Production Engineering Vol. 2 (2011), 209-217.

DOI: 10.1007/s11740-010-0293-7

Google Scholar

[7] C. Ohrt, M. Kästner, E. Reithmeier, A. Weckenmann, J. Weickmann, Optische Inspektion von Blechmassivumformteilen und -werkzeugen mit feinen Nebenformelementen, in: Technisches Messen tm Vol. 79 (2012) 2, 95-102.

DOI: 10.1524/teme.2012.0159

Google Scholar

[8] C. Ohrt, W. Hartmann, M. Kästner, A. Weckenmann, T. Hausotte, E. Reithmeier, Holistic measurement in the sheet-bulk metal forming process with fringe projection, in: scientific. net (Eds. ): Key Engineering Materials KEM Vol. 504 (2012).

DOI: 10.4028/www.scientific.net/kem.504-506.1005

Google Scholar

[9] J. Weickmann, A. Weckenmann, P. -F. Brenner, Automatic, Task-Sensitive and Simulation-Based Optimization of Fringe Projection Measurements, in: scientific. net (Eds. ): Key Engineering Materials KEM Vol. 437 (2010), 439-443.

DOI: 10.4028/www.scientific.net/kem.437.439

Google Scholar

[10] R. Hill, Constitutive modelling of orthotropic plasticity in sheet metals, in: J. Mech. Phys. Solids, Vol. 38, 3 (1990), 405-417.

DOI: 10.1016/0022-5096(90)90006-p

Google Scholar

[11] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, in: Proc. Roy. Soc. London, 193 (1948): 281–297.

Google Scholar

[12] S. Schmaltz, K. Willner, Identification of orthotropic plastic material parameters for deep drawing steel using DIC and FEMU, Computational Plasticity XI – Fundamentals and Applications, Vol. 11 (2011), 241-250.

Google Scholar

[13] S. Govindjee, P. A. Mihalic, Computational methods for inverse finite elastostatics, in: Comp. Meth. Appl. Mech. Engrg. Vol. 136, 1-2 (1996), 47-57.

DOI: 10.1016/0045-7825(96)01045-6

Google Scholar

[14] U. Vierzigmann, M. Merklein, U. Engel, Friction conditions in Sheet-Bulk metal forming, in: Procedia Engineering, Vol. 19 (2011), 377-382.

DOI: 10.1016/j.proeng.2011.11.128

Google Scholar