Cranial Reconstruction Using Double Side Incremental Forming

Article Preview

Abstract:

Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Comparing to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized products such as cranial implant. Although effort on cranial reconstruction by using incremental sheet forming approach has been made in recent years, research has been mostly based on the single point incremental forming (SPIF) strategy and there are still considerable technical challenges for achieving better geometric accuracy, thickness distribution and complex cranial shape. In addition, the use of a backing plate or supporting die reduces the process flexibility and increases the cost. To overcome these limitations, double side incremental sheet forming (DSIF) process is employed for forming Grade 1 pure titanium sheet by using different toolpath strategies. The geometric accuracy and thickness distribution of the final part are evaluated so the optimized tool path strategies are developed. This leads to an assessment of the DSIF based approach for the application in cranial reconstruction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

535-542

Citation:

Online since:

March 2015

Export:

Price:

* - Corresponding Author

[1] S. Aydin, B. Kucukyuruk, B. Abuzayed, S. Aydin, and G. Sanus, Cranioplasty: Review of materials and techniques, J. Neurosci. Rural Pract. 2 (2011) 162-167.

DOI: 10.4103/0976-3147.83584

Google Scholar

[2] U. Spetzger, V. Vougioukas, and J. Schipper, Materials and techniques for osseous skull reconstruction, Mini. Invasive Thero. Allied Technol., 19 (2010) 110-121.

DOI: 10.3109/13645701003644087

Google Scholar

[3] E. Heissler, F.S. Fischer, S. Bolouri, T. Lehmann, W. Mathar, A. Gebhardt, W. Lanksch, and J. Bier, Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects, Int. J. Oral Maxillofac. Surg., 27 (1998).

DOI: 10.1016/s0901-5027(98)80060-x

Google Scholar

[4] D. Bhargava, P. Bartlett, J. Russell, M. Liddington, A. Tyagi, and P. Chumas, Construction of titanium cranioplasty plate using craniectomy bone flap as template, Acta Neurochirurgica., 152 (2010) 173-176.

DOI: 10.1007/s00701-009-0394-2

Google Scholar

[5] J. Joffe, M. Harris, F. Kahugu, S. Nicoll, A. Linney, and R. Richards, A prospective study of computer-aided design and manufacture of titanium plate for cranioplasty and its clinical outcome, Br. J. Neurosurg., 13 (1999) 576-580.

DOI: 10.1080/02688699943088

Google Scholar

[6] H. Rotaru, H. Stan, I.S. Florian, R. Schumacher, Y. -T. Park, S. -G. Kim, H. Chezan, N. Balc, and M. Baciut, Cranioplasty With Custom-Made Implants: Analyzing the Cases of 10 Patients, J. Oral & Maxillofac. Surg., 70 (2012) 169-176.

DOI: 10.1016/j.joms.2011.09.036

Google Scholar

[7] M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Manufacturing and processing of NiTi implants: A review, Prog. in Mat. Sci., 57 (2012) 911-946.

DOI: 10.1016/j.pmatsci.2011.11.001

Google Scholar

[8] J. Jeswiet, Asymmetric Incremental Sheet Forming, Adv. Mat. Res., 6-8 (2005) 35-58.

Google Scholar

[9] H. Iseki, K. Kato, and S. Sakamoto, Flexible and incremental sheet metal forming using a spherical roller, In: Proc. 40th JJCTP. (1989) 41–44 (in Japanese).

Google Scholar

[10] S. Matsubara, Incremental Backward Bulge Forming of a Sheet Metal with a Hemispherical Head Tool, J. JSTP, 35 (1994) 1311-1316.

Google Scholar

[11] B.T. Araghi, G.L. Manco, M. Bambach, and G. Hirt, Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming, CIRP Ann. - Manuf. Technol., 58 (2009) 225-228.

DOI: 10.1016/j.cirp.2009.03.101

Google Scholar

[12] W.B. Lievers, A.K. Pilkey, and D.J. Lloyd, Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys, Acta Materialia., 52 (2004) 3001-3007.

DOI: 10.1016/j.actamat.2004.03.002

Google Scholar

[13] G. Hussain, H.R. Khan, L. Gao, and N. Hayat, Guidelines for Tool-Size Selection for Single-Point Incremental Forming of an Aerospace Alloy, Mat. & Manuf. Process., 28 (2012) 324-329.

DOI: 10.1080/10426914.2012.700151

Google Scholar

[14] G. Ambrogio, L. De Napoli, L. Filice, F. Gagliardi, and M. Muzzupappa, Application of Incremental Forming process for high customised medical product manufacturing, J. Mat. Process. Technol., 162-163 (2005) 156-162.

DOI: 10.1016/j.jmatprotec.2005.02.148

Google Scholar

[15] J.R. Duflou, B. Lauwers, J. Verbert, F. Gelaude, and Y. Tunckol, Medical Application of Single Point Incremental Forming: Cranial Plate Manufacturing, in Proc. 2nd Int. Conf. Adv. Res. Virtual and Rapid Prototyping, 2005, pp.161-166.

Google Scholar

[16] R. Araújo, P. Teixeira, M.B. Silva, A. Reis, and P.A.F. Martins, Single point incremental forming of a medical implant, Key Eng. Mat., 544–557 (2013) 1388–1393.

DOI: 10.4028/www.scientific.net/kem.554-557.1388

Google Scholar

[17] A. Göttmann and M. Korinth, Manufacturing of cranial implants using incremental sheet metal forming, in Proc. 1st Int. Conf. on Design and Processes for Medical Devices (PROMED), 2012, pp.287-290.

DOI: 10.1007/978-3-642-24491-9_28

Google Scholar

[18] B. Lu, H. Ou, S.Q. Shi, H. Long, and J. Chen, Titanium based cranial reconstruction using incremental sheet forming, Int. J. Mat. Form., (2014) (online first).

DOI: 10.1007/s12289-014-1205-8

Google Scholar

[19] J.R. Duflou, A.K. Behera, H. Vanhove, and L.S. Bertol, Manufacture of Accurate Titanium Cranio-Facial Implants with High Forming Angle Using Single Point Incremental Forming, Key Eng. Mat., 549 (2013) 223-230.

DOI: 10.4028/www.scientific.net/kem.549.223

Google Scholar

[20] H. Meier, V. Smukala, O. Dewald, and J. Zhang, Two Point Incremental Forming with Two Moving Forming Tools, Key Eng. Mat., 344 (2007) 599-605.

DOI: 10.4028/www.scientific.net/kem.344.599

Google Scholar

[21] H. Meier, C. Magnus, and V. Smukala, Impact of superimposed pressure on dieless incremental sheet metal forming with two moving tools, CIRP Ann. - Manuf. Technol., 60 (2011) 327-330.

DOI: 10.1016/j.cirp.2011.03.134

Google Scholar

[22] R. Malhotra, J. Cao, M. Beltran, D. Xu, J. Magargee, V. Kiridena, and Z.C. Xia, Accumulative-DSIF strategy for enhancing process capabilities in incremental forming, CIRP Ann. - Manuf. Technol., 61 (2012) 251-254.

DOI: 10.1016/j.cirp.2012.03.093

Google Scholar

[23] J. Smith, R. Malhotra, W.K. Liu, and J. Cao, Deformation mechanics in single-point and accumulative double-sided incremental forming, Int. J. Adv. Manuf. Technol., 69 (2013) 1185-1201.

DOI: 10.1007/s00170-013-5053-3

Google Scholar

[24] L. Piegl and W. Tiller, The NURBS book. 2nd ed. 1997, Berlin, New York: Springer.

Google Scholar

[25] H. Meier, B. Buff, R. Laurischkat, and V. Smukala, Increasing the part accuracy in dieless robot-based incremental sheet metal forming, CIRP Ann. - Manuf. Technol., 58 (2009) 233-238.

DOI: 10.1016/j.cirp.2009.03.056

Google Scholar

[26] R. Malhotra, N.V. Reddy, and J. Cao, Automatic 3D Spiral Toolpath Generation for Single Point Incremental Forming, ASME J. Manuf. Sci. & Eng., 132 (2010) 061003.

DOI: 10.1115/1.4002544

Google Scholar

[27] H. Zhu, Z. Liu, and F. J., Spiral tool-path generation with constant scallop height for sheet metal CNC incremental forming, Int. J. Adv. Manuf. Technol. (2011) (online first).

DOI: 10.1007/s00170-010-2996-5

Google Scholar

[28] B. Lu, J. Chen, H. Ou, and J. Cao, Feature-based tool path generation approach for incremental sheet forming process, J. Mat. Proces. Technol., 213 (2013) 1221-1233.

DOI: 10.1016/j.jmatprotec.2013.01.023

Google Scholar