Friction-Spinning - Influence of Tool and Machine Parameters on the Surface Texture

Article Preview

Abstract:

The incremental forming process of “friction-spinning” is suited to the manufacture of functionally graded workpieces made from tubes and sheets with the defined adjustment of material properties. The innovative feature of this new process is the use of process elements from both metal spinning and friction welding. As the workpieces are being processed, friction sub-processes are employed to achieve self-induced heat generation. Compared with conventional spinning processes, this in-process heat treatment permits the extension of existing forming limits and allows more complex geometries to be achieved, together with defined, favorable part properties. These properties, like strength, grain size or surface conditions, can be influenced by the set of specific temperature profiles that prevail during the manufacturing process in combination with the degree of deformation. The temperature profiles can be adjusted by selecting appropriate process and tool parameters in a defined manner. This paper presents the influence of the aforementioned parameters on the surface texture. The results presented start with the analysis of the surface texture development. Following this, the effects of the significant process parameters and tool geometries that give rise to the typical structure and hardness are explained.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

1109-1114

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] Kleiner, M., Geiger, M., Klaus, A., Manufacturing of Lightweight Components by Metal Forming, Annals of the CIRP, Vol. 52/2/2003, (2004), pp.521-542.

DOI: 10.1016/s0007-8506(07)60202-9

Google Scholar

[2] Finckenstein, E. von, Dierig, H., CNC-Drücken, Annals of the CIRP, Vol. 39/1: (1990) pp.267-270.

DOI: 10.1016/s0007-8506(07)61050-6

Google Scholar

[3] Neugebauer, R., Altan, T., Geiger, M., Kleiner, M., Sterzing, A.,. Sheet Metal Forming at Elevated Temperatures, Annals of the CIRP 55/2, (2006) p.793–816.

DOI: 10.1016/j.cirp.2006.10.008

Google Scholar

[4] Awiszus, B., Meyer, F., Meyer, L.W., Hahn, F., Erweiterung der Formgebungsgrenzen durch inkrementelle zyklische Umformung am Beispiel des Drückwalzens (Abstreckdrücken). Tagungsband zum Abschlusskolloquium des DFG Schwerpunktprogramms 1074 Erweiterung der Formgebungsgrenzen bei Umformprozessen, 3. Mai 2005, Aachen.

Google Scholar

[5] Klocke, F., Brummer, C. M., 2014, Laser-assisted metal spinning of challenging materials. Procedia Engineering of the 11th ICTP Vol. 81, Elsevier, Nagoya, Japan, 2385-2390.

DOI: 10.1016/j.proeng.2014.10.338

Google Scholar

[6] Homberg, W., Lossen, B., Forming Technology. In: Homberg, W.; Biermann, D; Heim, H. -P. (Hrsg. ), Functionally Graded Materials in Industrial Mass Production | Fundamentals. Verlag Wissenschaftliche Skripten, Auerbach, ISBN 978-3-942267-92-2, pp.43-76, (2013).

Google Scholar

[7] Homberg, W., Lossen, B., Thermal assisted incremental forming of tubes and sheets with process-integrated heat generation. In: Heim, H. -P.; Biermann, D.; Homberg, W. (Hrsg. ), Functionally Graded Materials in Industrial Mass Production | Volume 2. Verlag Wissenschaftliche Skripten, Auerbach, ISBN 978-3-942267-91-5, (2013).

Google Scholar

[8] Hornjak, D., Grundlegende Untersuchung der Prozess- und Werkzeugparameter und ihrer Wechselwirkungen für das thermo-mechanisch unterstützte inkrementelle Umformverfahren des Reib-Drückens; Paderborn Univ. Diss., Aachen 2013: Shaker.

Google Scholar

[9] Lossen, B. & Homberg, W.: Friction-Spinning – Interesting approach to the manufacture of complex sheet metal parts and tubes. Procedia Engineering of the 11th ICTP Vol. 81, Elsevier, Nagoya, Japan, (2014) pp.2379-2384.

DOI: 10.1016/j.proeng.2014.10.337

Google Scholar

[10] Kawai, K., Kushida, H., Kudo, H., Rotary drawing of cylindrical cup. Advanced Technology of Plasticity 2, (2002) p.1429–1434.

Google Scholar

[11] Music, O., Allwood, J.M., Kawai, K., A review of the mechanics of metal spinning. Journal of Materials Processing Technology, Vol. 210 (2010), Issue 1, pp.3-23.

DOI: 10.1016/j.jmatprotec.2009.08.021

Google Scholar

[12] Hayama, M., Kudo, H., Shinokura, T., Study of the Pass Shedule in Conventional Simple Spinning. Bulletin of the JSME, Vol. 13, Issue 65, (1970) pp.1358-1365.

DOI: 10.1299/jsme1958.13.1358

Google Scholar

[13] Kawai, K., Kushida, A., Kudo, H., Rotary Drawing of Cylindrical Cup. Advanced Technology of Plasticity – Proceedings of the 7th ICTP, Vol. 2, (2002) pp.1429-1434.

Google Scholar