Application of a Non-Invasive Form Finding Algorithm to the Ring Compression Test with Varying Friction Coefficients

Article Preview

Abstract:

It is a great challenge in the development of functional components to determine the optimal blank design (material configuration) of a workpiece according to a specific forming process, while knowing the desired target geometry (spatial configuration). A new iterative non-invasive algorithm, which is purely based on geometrical considerations, is developed to solve inverse form finding problems. The update-step is performed by mapping the nodal spatial difference vector, between the computed spatial coordinates and the desired spatial target coordinates, with a smoothed deformation gradient to the discretized material configuration. The iterative optimization approach can be easily coupled non-invasively via subroutines to arbitrary finite element codes such that the pre-processing, the solving and the post-processing can be performed by the habitual simulation software. This is exemplary demonstrated by an interacting between Matlab (update procedure for inverse form finding) and MSC.MarcMentat (metal forming simulation). The algorithm succeeds for a parameter study of a ring compression test within nearly linear convergence rates, despite highly deformed elements and tangential contact with varying friction parameters.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

1381-1386

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] M. Merklein, J.M. Allwood, B.A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A.E. Tekkaya, A. Weckenmann, Bulk forming of sheet metal, CIRP Annals – Manufacturing Technology, Vol. 61-2, (2012) 725-745.

DOI: 10.1016/j.cirp.2012.05.007

Google Scholar

[2] Y.Q. Guo, J.L. Batoz, J.M. Detraux, P. Duroux, Finite element procedures for strain estimations of sheet metal forming parts, Int. J. Num. Meth. Engrg., Vol. 30, (1990) 1385-1401.

DOI: 10.1002/nme.1620300804

Google Scholar

[3] J.Y. Kim, N. Kim, M.S. Huh, Optimum blank design of an automobile subframe, J. Mat. Proc. Tech., Vol. 101, (2000) 31-43.

Google Scholar

[4] R. Padmanabhan, M.C. Oliveira, A.J. Baptista, J.L. Alves, L.F. Menezes, Blank design for deep drawing parts using parametric NURBS surfaces, J. Mat. Proc. Tech., doi: 10. 1016/j. jmatprotec. 2008. 05. 035 (2008).

DOI: 10.1016/j.jmatprotec.2008.05.035

Google Scholar

[5] S. Acharjee, N. Zabaras, The continuum sensitivity method for the computational design of 3D deformation processes, Comp. Meth. Appl. Mech. Engrg., Vol. 195, (2006) 6822-6842.

DOI: 10.1016/j.cma.2004.05.033

Google Scholar

[6] S. Germain, P. Landkammer, P. Steinmann, On a recursive formulation for solving inverse form finding problems in isotropic elastoplasticity, Adv. Modell. Sim. Engrg. Sc., Vol. 10-1, doi: 10. 1186/2213-7467-1-10 (2013).

DOI: 10.1186/2213-7467-1-10

Google Scholar

[7] P. Landkammer, P. Steinmann, A non-invasive approach to inverse form finding, submitted.

Google Scholar

[8] A.T. Male, M.G. Cockroft, A method for determination of the coefficient of friction of metals under conditions of bulk plastic deformation, Journ. Instit. of Metals, Vol. 93, (1964) 38-46.

Google Scholar

[9] U. Vierzigmann, T. Schneider, J. Koch, D. Groebel, M. Merklein, U. Engel., Untersuchung von Tailored Surfaces für die BMU mittels angepasstem Ringstauchversuch, Tgbd. 2. WS Blechmassivumformung, Editor: M. Merklein, B.A. Behrens, A. -E. Tekkaya, (2013).

Google Scholar

[10] E. Hinton, J.S. Campbell, Local and global smoothing of discontinuous finite element functions using a least square method, Int. J. Num. Meth. Engrg., Vol. 8-3, pp.461-480 (1974), doi: 10. 1002/nme. 1620080303 (2005).

DOI: 10.1002/nme.1620080303

Google Scholar

[11] S. Schmaltz, K. Willner, Comparison of different biaxial tests for inverse identification of sheet steel material parameters, Int. J. Exp. Mechanics, doi: 10. 111/str. 12080 (2014).

DOI: 10.1111/str.12080

Google Scholar