Nanocellulose Films from Amazon Forest Wood Wastes: Structural and Thermal Properties

Article Preview

Abstract:

The aim of this work was to determine the best fibrillation intensity that should be used to produce high crystalline and thermal stable microfibrillated cellulose (MFC) and nanocellulose films from C. goeldiana veneer wastes. The number of passages (cycles) of cellulose suspension tested in grinder were 10, 20, 30 and 40. Important properties to be analyzed included changes in morphology from the raw wood to the nanocellulose films, increases/decreases in cellulose crystalline index for inference on biomaterial strength, and thermal behavior changes to support conclusions on biomaterials processing and application possibilities. After chemical treatments for cellulose isolation, mechanical shearing was applied to produce cellulose nanostructures; hence nanocellulose films could be successfully produced from C. goeldiana wood wastes. Influence of more refining cycles on thermal properties, indicated higher stability for 40-cycles nanocellulose films. In general, grinder refining process decreased crystalline index of cellulose.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-117

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] J.C. Gonçalez, T.L.F. Félix, F.N. Gouveia, J.A.A. Camargos, P.G. Ribeiro, Effect of ultraviolet radiation on the color of freijó wood (Cordia goeldiana Huber) after application of finishing products, Ci. Fl. 20 (2010) 657-664.

DOI: 10.5902/198050982424

Google Scholar

[2] N.N. Lima, L.M. Mendes, V.A. de Sá, L. Bufalino, Mechanical and physical properties of LVL panels made from three amazonic species, Cerne. 19 (2013) 407-403.

DOI: 10.1590/s0104-77602013000300007

Google Scholar

[3] Information on http: /www. fao. org/forestry/46203/en.

Google Scholar

[4] A. Ferrer, E. Quintana, I. Filpponen, I. Solala, T. Vidal, A. Rodríguez, J. Laine, O.J. Rojas, Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers, Cellul. 19 (2012) 2179-2193.

DOI: 10.1007/s10570-012-9788-z

Google Scholar

[5] Y. Zhang, J. Mckechnie, D. Cormier , R. Lyng, W. Mabee , A. Ogino , H.L. Maclean, Flexible and transparent paper-based ionic diode fabricated from oppositely charged microfibrillated cellulose, J. Phys. Chem. C. 116 (2012) 9227-9234.

DOI: 10.1021/jp301924g

Google Scholar

[6] S.J. Eichhorn, A. Dufresne, M. Arangurem, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A.N. Nagakaito, A. Mangalam, J. Simonsem, A.S. Benight, A. Bismarck, L.A. Berglund, T. Peijis, Review: current international research into cellulose nanofibres and nanocomposites, J. Mater. Sci. 45 (2010).

DOI: 10.1007/s10853-009-3874-0

Google Scholar

[7] L. Segal, J.J. Creely, A.E. Martin Jr, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J. 29 (1959) 786-794.

DOI: 10.1177/004051755902901003

Google Scholar

[8] J. Fernandez-Bolanos, B. Felizón, A. Heredia, R. Guillen, A. Jiménez, Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones, Bioresour. Technol. 68 (1999) 121-132.

DOI: 10.1016/s0960-8524(98)00134-5

Google Scholar

[9] A. Alemdar, M. Sain, Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls, Bioresour. Technol. 99 (2008) 1664-1671.

DOI: 10.1016/j.biortech.2007.04.029

Google Scholar

[10] Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan, Crystal structure and hydrogen bonding system in cellulose Iɑ from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 125 (2003) 14300-14306.

DOI: 10.1021/ja037055w

Google Scholar

[11] A.C. Correa, E.M. Teixeira, L.A. Pessan, L.H.C. Mattoso, Cellulose nanofibers from curaua fibers, Cellul. 17 (2010) 1183-1192.

DOI: 10.1007/s10570-010-9453-3

Google Scholar

[12] B. Deepa, E. Abraham, B.M. Cherian, A. Bismarck, J.J. Blaker, L.A. Pothan, A.L. Leao, S.F. de Souza, M. Kottaisamy, Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion, Bioresour. Technol. 102 (2011).

DOI: 10.1016/j.biortech.2010.09.030

Google Scholar

[13] K. Uetani, H. Yano, Nanofibrillation of wood pulp using a high-speed blender, Biomacromolecules. 12 (2011) 348-353.

DOI: 10.1021/bm101103p

Google Scholar

[14] S. Iwamoto, A.N. Nakagaito, H. Yano, Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites, Appl. Phys. A. 89 (2007) 461–466.

DOI: 10.1007/s00339-007-4175-6

Google Scholar

[15] A. Iwamoto, K. Abe, H. Yano, The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics, Biomacromolecules. 9 (2008) 1022-1026.

DOI: 10.1021/bm701157n

Google Scholar

[16] A.R. Sena Neto, M.A.M. Araujo, F.V.D. Souza, L.H.C. Mattoso, J.M. Marconcini, Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites, Ind. Crops Prod. 43 (2013).

DOI: 10.1016/j.indcrop.2012.08.001

Google Scholar

[17] S. Yaman, Pyrolysis of biomass to produce fuels and chemical feedstock, Energy Convers. Manage. 45 (2004) 651-671.

DOI: 10.1016/s0196-8904(03)00177-8

Google Scholar

[18] M.F. Rosa, B. Chiou, L.S. Medeiros, D.F. Wood, T.G. Willians, L.H.C. Mattoso, W.J. Orts, S.H. Iman, Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites, Bioresour. Technol. 100 (2009).

DOI: 10.1016/j.biortech.2009.03.085

Google Scholar