Application of Taguchi Method to Optimization of Cutting Force and Temperature during Turning of Difficult to Cut Materials

Article Preview

Abstract:

The paper presents an analysis of the selection of the regression function in the optimization of steel turning using Taguchi method. The study attempts to investigate cutting force and temperature during turning of steel. Taguchi L16 (4) 2 orthogonal array has been applied for experimental design. S/N ratio and ANOVA analyses were performed to identify significant parameters influencing cutting force and temperature. Mathematical models for both response parameters i.e. cutting force and temperature roughness were obtained through regression analysis. The confirmation experiments carried out at optimal combination of parameters given by Taguchi’s analysis. The optimal solution provided by desirability function optimization was compared with the optimal setting of parameters given by Taguchi analysis. The optimization results provided by both techniques are in close proximity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-118

Citation:

Online since:

February 2016

Export:

Price:

* - Corresponding Author

[1] W. Grzesik, T. Wanat, Surface finish generated in hard turning of quenched alloy steel parts using conventional and wiper ceramic inserts, International Journal of Machine Tools and Manufacture 46, (2006) 1988-(1995).

DOI: 10.1016/j.ijmachtools.2006.01.009

Google Scholar

[2] AG. Mamalis, J. Kundrak J, M. Horvath, On a novel tool life relation for precision cutting tools, Journal of Manufacturing Science and Engineering - Transactions of the Asme 127, 2 (2005) 328-332.

DOI: 10.1115/1.1794158

Google Scholar

[3] J. Kundrák, G. Varga, Possibility of reducing environmental load in hard machining, Key Engineering Materials 496 (2011) 205-210.

DOI: 10.4028/www.scientific.net/kem.496.205

Google Scholar

[4] B. Słodki, W. Zębala, G. Struzikiewicz, Correlation Between Cutting Data Selection and Chip Form in Stainless Steel Turning, Machining Science and Technology 19, 2 (2015) 217-235. DOI: 10. 1080/10910344. 2015. 1018530.

DOI: 10.1080/10910344.2015.1018530

Google Scholar

[5] B. Karpuschewski, K. Schmidt, J. Beňo, I. Maňková, J. Prilukova, Measuring procedures of cutting edge preparation when hard turning with coated ceramics tool inserts, Measurement 55, 9 (2014) 627-640.

DOI: 10.1016/j.measurement.2014.06.008

Google Scholar

[6] W. Zębala, R. Kowalczyk, Cutting Data Influence on Cutting Forces and Surface Finish During Sintered Carbide Turning, Key Engineering Materials   581 (2014)  148-153.

DOI: 10.4028/www.scientific.net/kem.581.148

Google Scholar

[7] M. Nalbant, H. Gökkaya, G. Sur, Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials and Design 28 (2007) 1379-1385.

DOI: 10.1016/j.matdes.2006.01.008

Google Scholar

[8] W. Zębala, B. Słodki, Cutting data correction in Inconel 718 turning, International Journal of Advanced Manufacturing Technology 65, 5-8 (2013) 881-893, DOI 10. 1007/s00170-012-4225-x.

DOI: 10.1007/s00170-012-4225-x

Google Scholar

[9] J. Kundrák, G. Varga, Possibility of reducing environmental load in hard machining. Key Engineering Materials 496 (2011) 205-210.

DOI: 10.4028/www.scientific.net/kem.496.205

Google Scholar

[10] Z.L. Han, B. Lin, B.X. Zhang, L. Zhang, Design optimization of cutting parameters in turning 45Cr steel using cermets tool, Key Engineering Materials 443 (2010) 238-243.

DOI: 10.4028/www.scientific.net/kem.443.238

Google Scholar

[11] W. Zębala, Modelling researches of the vibrations influence on the cutting process, Advances in Manufacturing Science and Technology, 29, 4 (2005) 99-107 (ISSN 0137-4478).

Google Scholar

[12] A.R. Motorcu, The optimization of machining parameters using the Taguchi method for surface roughness of aisi 8660 hardened alloy. SteelStrojniški Vestnik - Journal of Mechanical Engineering 56-6 (2010) 391-401.

Google Scholar

[13] Z.Q. Liu, J.M. Wang, Y. Wan, Machinability for turning of 1CR18NI9TI austenitic stainless steel with ceramic tool, Key Engineering Materials 315-316 (2006) 584-587.

DOI: 10.4028/www.scientific.net/kem.315-316.584

Google Scholar

[14] Sandvik Coromant - Application Guide: Aerospace Engine (2004); Turning Tools (2011).

Google Scholar

[15] W. Zębala, B. Słodki, G. Struzikiewicz, Productivity and reliability improvement in turning inconel 718 alloy-case study, Eksploatacja i Niezawodnosc-Maintenance and Reliability 15, 4 (2013) 421-426.

Google Scholar

[16] S. Karagiannis, P. Stavropoulos, C. Ziogas, J. Kechagias, (2013).

Google Scholar

[17] W. Zębala, R. Kowalczyk, Estimating the effect of cutting data on surface roughness and cutting force during WC-Co turning with PCD tool using Taguchi design and ANOVA analysis, International Journal of Advanced Manufacturing Technology, 77, 9-12 (2015).

DOI: 10.1007/s00170-014-6382-6

Google Scholar

[18] Information on http: /www. iscar. com.

Google Scholar