Structure and Properties of Dyes in Coloration of Textiles: Application of Fragment Approach

Article Preview

Abstract:

The paper reports the results of QSPR analysis of several problems of coloration of textiles, including light fastness of azo benzothiazole and indigoid dyes, ionization of hydroxyl groups in mordant dyes forming complexes with polyvalent metal ions and rate reactions of organic substances with OH radical during catalytic oxidizing of pollutants. Multiple linear regression models are built with the use of fragment descriptors. The role of different molecular fragments is discussed emphasizing the mechanism of the phenomena and ways of application in coloration technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-266

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] Vickerstaff T. The Physical Chemistry of Dyeing. 2-nd ed. London-Edinburgh: Oliver and Boyd, 1954. 514 pp.

Google Scholar

[2] Giles C.H., Duff D.G., Sinclair R.S. Relation between the molecular structure of dyes and their technical properties. Chapter VII. In: The Chemistry of Synthetic Dyes. Vol. 8. Ed. by K. Venkataraman. New York-London: Academic Press, 1978. 279-329.

DOI: 10.1016/b978-0-12-717008-4.50016-1

Google Scholar

[3] Katritzky A.R., Karelson M; Lobanov V. S. (1997) QSPR as a means of predicting and understanding chemical and physical properties in terms of structure, Pure and Applied Chemistry 69 (2) 245-248.

DOI: 10.1351/pac199769020245

Google Scholar

[4] Baskin, I, Varnek, A. (2008).

Google Scholar

[5] Vorberg S., Tetko I.V. (2014) Modeling the Biodegradability of Chemical Compounds Using the Online CHEmical Modeling Environment (OCHEM), Mol. Inf. 33 (1) 73–85.

DOI: 10.1002/minf.201300030

Google Scholar

[6] Timofei S., Schmidt W., Kurunczi L., Simon Z. (2000) A review of QSAR for dye affinity for cellulose fibres, Dyes and Pigment 47, No. 1-2. P. 5-16.

DOI: 10.1016/s0143-7208(00)00058-9

Google Scholar

[7] Churchley J.H., Greaves A.J., Hutchings M.G., Phillips D.A.S. and Taylor J.A. A chemometric approach to understanding the bioelimination of anionic, water soluble dyes by a biomass. Part 2: Acid dyes, J. Soc. Dyers Colour. 2000, 116, No. 7/8. P. 222-228; Part 3: Direct dyes, J. Soc. Dyers Colour. 2000, 116, No. 9. P. 279-284; Part 4: Reactive dyes, J. Soc. Dyers Colour. 2000, 116, No. 1. P. 323-329.

DOI: 10.1111/j.1478-4408.2000.tb00009.x

Google Scholar

[8] Egorova, L.P., Kobrakov, K.I. Study of the relationship between electronic structure and properties of direct azo dyes, Book of Papers of Moscow State Textile University, 2003, issue 6. 35-39.

Google Scholar

[9] Telegin F., Shushina I. Ran J.H., Biba Y., Mikhaylov A., Priazhnikova V. Structure – Property Relationships for Dyes of Different Nature, Advanced Materials Research, Vols. 821-822 (2013) pp.488-492.

DOI: 10.4028/www.scientific.net/amr.821-822.488

Google Scholar

[10] Zhokhova N I, Baskin I I, Palyulin V A et al. (2005), A Study of the Affinity of Dyes for Cellulose Fiber within the Framework of a Fragment Approach in QSPR. Russ J Appl Chem 78(6): 1013–1017.

DOI: 10.1007/s11167-005-0439-0

Google Scholar

[11] Chemical software JChem. www. chemaxon. com/jchem. Program is licensed to ISUCT.

Google Scholar

[12] Peters, A. T. (1988) Substituent effects on the colour, dyeing and fastness properties of 4-phenylazo-1-naphthylamines and of 2-acetylamino-5-methoxy-4-N-ß-cyanoethyl-N-ß-hydroxyethylaminoazobenzene. J. Soc. Dyers and Colour. 104 (9), 344–348.

DOI: 10.1111/j.1478-4408.1988.tb01177.x

Google Scholar

[13] Peters, A. T.; Gbadamosi, N.M.A. (1992) 5, 6-(6, 7-)dichlorobenzothiazolylazo dyes for synthetic-polymer fibres. Dyes and Pigments 18 (2), 115–123.

DOI: 10.1016/0143-7208(92)80011-b

Google Scholar

[14] Peters, A. (1992) Hetarylazo disperse dyes derived from 5, 6-dichloro-and 6, 7-dichloro-2 aminobenzothiazoles. Dyes and Pigments 20 (1), 41–51.

DOI: 10.1016/0143-7208(92)80039-p

Google Scholar

[15] Peters, A. T.; Taebi, A.; Yang, S. S. (1993) Disperse dyes. Hetarylazo derivatives from dichloro-2-aminobenzothiazoles. J Soc. Dyers and Colour. 109 (12), 397–401.

DOI: 10.1111/j.1478-4408.1993.tb01525.x

Google Scholar

[16] Peters, A. T.; Yang, S. S. (1996) Monoazo disperse dyes derived from mononitro-dichloro-2-aminobenzothiazoles. Dyes and Pigments 30 (4), 291–299.

DOI: 10.1016/0143-7208(95)00064-x

Google Scholar

[17] Peters, A. (1995) Monoazo disperse dyes derived from nitro-2-aminobenzothiazoles. Dyes and Pigments 28 (3), 151–164.

DOI: 10.1016/0143-7208(95)00012-5

Google Scholar

[18] World Dye Variety, www. worlddyevariety. com, 2015-01-05.

Google Scholar

[19] Ran J.H., Shushina I. Priazhnikova V. and Telegin F. (2013) Inhibition of Mordant Dyes Destruction in Fenton Reaction, Advanced Materials Research, Vols. 821-822, 493-496.

DOI: 10.4028/www.scientific.net/amr.821-822.493

Google Scholar

[20] Hilal, S H; Carreira, A; Baughman, G L; Karickhoff, S W. (1994) Estimation of ionization constants of azo dyes and related aromatic amines: Environmental implication. J Phys Org Chem, 7, 122-141.

DOI: 10.1002/poc.610070304

Google Scholar

[21] Kušić, H; Rasulev, B; Leszczynska, et al. (2009): Prediction of rate constants for radical degradation of aromatic pollutants in water matrix. A QSAR study. Chemosphere 75 (8), p.1128–1134.

DOI: 10.1016/j.chemosphere.2009.01.019

Google Scholar