Estimation of Anisotropy of Creep Properties in Al and Mg Alloys by Means of Small Punch Test

Article Preview

Abstract:

Small punch test was used to evaluate the properties of light alloys in various directions. Three different materials were studied: (i) magnesium alloy WE54 prepared by a powder metallurgical route with final hot extrusion, (ii) aluminium alloy reinforced with 20 vol. % of Saffil fibres with planar orientation, and (iii) Al-Al4C3 composite prepared by mechanical alloying and subjected to equal channel angular pressing as a final step. Tests were performed under constant force at elevated temperatures. The observed orientation dependence of creep properties is strongly material dependent. The results confirm the feasibility of the small punch test for determination of anisotropy of mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-143

Citation:

Online since:

April 2017

Export:

Price:

* - Corresponding Author

[1] Y.W. Ma, K.B. Yoon, Assessment of tensile strength using small punch test for transversely isotropic aluminum 2024 alloy produced by equal channel angular pressing, Mater. Sci. Engng. A 527 (2010) 3630–3638.

DOI: 10.1016/j.msea.2010.02.057

Google Scholar

[2] Y.W. Ma, J.W. Choi, K.B. Yoon, Change of anisotropic tensile strength due to amount of severe plastic deformation in aluminum 2024 alloy, Mater. Sci. Engng. A 529 (2011) 1– 8.

DOI: 10.1016/j.msea.2011.08.015

Google Scholar

[3] K. Turba, R.C. Hurst, P. Hähner, Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique, J. Nucl. Mater. 428 (2012) 76–81.

DOI: 10.1016/j.jnucmat.2011.08.042

Google Scholar

[4] G. Garcés, M. Maeso, P. Pérez, P. Adeva, Effect of extrusion temperature on superplasticity of PM-WE54, Mater. Sci. Engng. A462 (2007) 127-131.

DOI: 10.1016/j.msea.2006.05.172

Google Scholar

[5] F. Dobeš, P. Pérez, K. Milička, G. Garcés, P. Adeva, Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests, Strength of Mater. 40 (2008) 114-117.

DOI: 10.1007/s11223-008-0030-z

Google Scholar

[6] F. Dobeš, K. Milička, M. Besterci, T. Kvačkaj, The influence of ECAP on the small punch creep of Al–4 vol. % Al4C3 composite, J. Mater. Sci. 45 (2010) 5171–5176.

DOI: 10.1007/s10853-010-4554-9

Google Scholar

[7] F. Dobeš, K. Milička, M. Besterci, Small Punch Testing of Al-4 vol. % Al4C3 Composite in Creep Conditions, High Temp. Mater. Process. 6 (2007) 193-199.

DOI: 10.1515/htmp.2007.26.3.193

Google Scholar

[8] M.R. Barnett, M.D. Nave, C.J. Bettles, Deformation microstructures and textures of some cold rolled Mg alloys, Mater. Sci. Engng. A386 (2004), 205-211.

DOI: 10.1016/s0921-5093(04)00942-6

Google Scholar

[9] J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, S.R. Agnew, The texture and anisotropy of magnesium–zinc–rare earth alloy sheets, Acta Mater. 55 (2007) 2101-2112.

DOI: 10.1016/j.actamat.2006.11.013

Google Scholar

[10] E.A. Ball, P.B. Prangnell, Tensile-compressive yield asymmetries in high strength wrought magnesium alloys, Scripta Mater. 31 (1994) 111-116.

DOI: 10.1016/0956-716x(94)90159-7

Google Scholar

[11] V.C. Nardone, J.R. Strife, Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4), Metal. Trans. A 18 (1987) 109–114.

DOI: 10.1007/bf02646227

Google Scholar

[12] G. Bao, J.W. Hutchinson, R.M. McMeeking, Particle reinforcement of ductile matrices against plastic flow and creep, Acta Metall. Mater. 39 (1991) 1871-1882.

DOI: 10.1016/0956-7151(91)90156-u

Google Scholar

[13] J. Rösler, G. Bao, A.G. Evans, The effects of diffusional relaxation on the creep strength of composites, Acta Metall. Mater. 39 (1991) 2733-2738.

DOI: 10.1016/0956-7151(91)90090-n

Google Scholar

[14] T. Mileiko, Steady state creep of a composite material with short fibres, J. Mater. Sci. 5 (1970) 254–261.

DOI: 10.1007/bf00551002

Google Scholar

[15] H.J. Ryu, K.H. Chung, S.I. Cha, S.H. Hong, Analysis of creep behavior of SiC/Al metal matrix composites based on a generalized shear-lag model, J. Mater. Res. 19 (2004) 3633-3640.

DOI: 10.1557/jmr.2004.0472

Google Scholar

[16] H.J. Ryu, S.H. Hong, Analysis of load transfer and high temperature creep behavior of SiCw/Al metal matrix composites, in: R.S. Mishra, A.K. Mukherjee, K.L. Murty (Eds. ), Creep Behavior of Advanced Materials for 21st Century, TMS, Warrendale, Pa., 1999, pp.159-170.

Google Scholar