Miscibility Study of Poly(Butylene Succinate) and Pine-Gum Blends

Article Preview

Abstract:

Miscibility between poly (butylene succinate) [PBS], a semi-crystalline polymer with a natural gum extracted from the pine tree (Pinus Caribaea – Hondurensis), was investigated in solution cast blends using Differential Scanning Calorimetry [DSC] and Fourier Transform Infrared Spectroscopy [FTIR]. The spherulite morphology of PBS in the blends was observed with polarized optical microscopy [POM]. Depression in the equilibrium melting temperature of PBS in the blends was determined using the Hoffman-Weeks plot method. The depression in the crystallization temperature of the blends with increasing pine gum ratio and the emergence of extinction rings in the spherulites of the blends confirmed the blends to be miscible at the molecular level. Infrared spectroscopy indicated that interactions occurred between the hydroxyl groups of the pine-gum and the carbonyl group of PBS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-152

Citation:

Online since:

May 2017

Export:

Price:

* - Corresponding Author

[1] A. Kumar, K. Karthick., K.P. Arumugam: Int. J. Biosci., Biochem. Bioinforma. Vol. 1 (2011) p.173.

Google Scholar

[2] A.E. Al-Rawajfeh, H.A. Al-Salah, I. Al-Rhaelc: Jord. J. Chem. Vol. 1 (2006) p.155.

Google Scholar

[3] G. Ciardelli, V. Chiono, P. Giusti: Biomacromolecules. Vol. 6 (2005) p. (1961).

Google Scholar

[4] A. Sarasam, S.V. Madihally: Biomaterials. Vol. 26 (2005) p.5500.

Google Scholar

[5] M. Zaverl, O. Valerio, M. Misra, A. Mohanty: J. Appl. Polym. Sci. Vol. 132 (2015) p.1.

Google Scholar

[6] K. Chavalitpanya, S. Phattanarudee: Energy Procedia, Vol. 34 (2013) p.542.

Google Scholar

[7] M. Piming, X. Cai, W. Wang, F. Duan, D. Shi, P. J. Lemstra: J. Appl. Polym. Sci. Vol. 131 (2014) p.1.

Google Scholar

[8] R. ten Have, P.J. Teunissen: Chem Rev. Vol. 101 (2001) p.3397.

Google Scholar

[9] E. Adler: Ind. Eng. Chem. Vol. 49 (1957) p.1377.

Google Scholar

[10] D. Rohindra, K. Kuboyama, and T. Ougizawa: Therm. Act. Vol. 545 (2012) p.26.

Google Scholar

[11] J.D. Hoffman, R.L. Miller: Polymer; Vol. 38 (1997) p.3151.

Google Scholar

[12] E.S. Yoo, S.S. Im: J. Polym. Sci. B, Vol. 37 (1999) p.1357.

Google Scholar

[13] T. Nishi, T.T. Wang: Macromolecules. Vol. 8, No. 6 (1975) p.909.

Google Scholar

[14] P.B. Rim, J.P. Runt: Macromolecules. Vol. 17, No. 8 (1984) p.1520.

Google Scholar

[15] P.P. Huo, P. Cebe: Macromolecules. Vol. 26, No. 12 (1993) p.3127.

Google Scholar

[16] P. Musto, L. WU, F.E. Karasz and W.J. MacKnight: Polymer. Vol 32 (1991) p.3.

Google Scholar

[17] A. Sanchis, M.G. Prolongo, C. Salom, and R.M. Masegosa: J Polym Sci B Polym Phys. Vol. 36 (1998) p.95.

Google Scholar

[18] D. Rohindra. J. Macromol. Sci. Phys. B. Vol. 48 (2009) p.1103.

Google Scholar

[19] Q. Xiao, S. Yan, K.D. Rogausch, J. Petermann, Y. Huang: J. Appl. Polym. Sci. Vol 80 (2001) p.1681.

Google Scholar

[20] H.D. Keith, F.J. Padden: Polymer, Vol. 25, No. 1 (1984) p.28.

Google Scholar