Investigation of Integral Composite T-Joints under Mixed Mode Loading

Article Preview

Abstract:

This paper presents experimental and numerical results on the deformations and failureof integral composite T-joints subjected to a realistic combined tensile and bending (mixed mode)load case. For this reason, standard pull-off and mixed mode load cases are experimentally studiedby means of a novel test fixture which keeps the force angle constant to the T-joint’s base and allowsfor repositioning of the specimen in order to minimize constraining forces. Two types of specimenswith varying deltoid radius are investigated. Additionally, kinematically nonlinear numerical simulationsare performed to locate damage onset and deformations of the specimens. It is found that thesimulations are in good agreement with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-202

Citation:

Online since:

August 2018

Export:

Price:

* - Corresponding Author

[1] M. Burnazzi and R. Radespiel. Design and analysis of a droop nose for coanda flap applications. Journal of Aircraft, 51(5):1567-1579, (2014).

DOI: 10.2514/1.c032434

Google Scholar

[2] J. Chen and D. Fox. Numerical investigation into multi-delamination failure of composite t-piece specimens under mixed mode loading using a modified cohesive model. Composite Structures, 94(6):2010-2016, (2012).

DOI: 10.1016/j.compstruct.2011.12.030

Google Scholar

[3] R. D. Cope and R. B. Pipes. Design of the composite spar-wingskin joint. Composites, 13(1): 47-53, (1982).

DOI: 10.1016/0010-4361(82)90170-7

Google Scholar

[4] F. Hélénon, M. R. Wisnom, S. R. Hallett, and R. S. Trask. Numerical investigation into failure of laminated composite t-piece specimens under tensile loading. Composites Part A: Applied Science and Manufacturing, 43(7):1017-1027, (2012).

DOI: 10.1016/j.compositesa.2012.02.010

Google Scholar

[5] T. M. Koh, S. Feih, and A. P. Mouritz. Experimental determination of the structural properties and strengthening mechanisms of z-pinned composite t-joints. Composite Structures, 93(9): 2222-2230, (2011).

DOI: 10.1016/j.compstruct.2011.03.009

Google Scholar

[6] S. Kumari and P. K. Sinha. Finite element analysis of composite wing t-joints. Jnl of Reinforced Plast and Composites, 21(17):1561-1585, (2002).

DOI: 10.1177/0731684402021017474

Google Scholar

[7] S. K. Panigrahi and B. Pradhan. Development of load coupler profiles of spar wingskin joints with improved performance for integral structural construction of aircraft wings. Jurnal of Reinforced Plastics and Composites, 28(6):657-673, (2008).

DOI: 10.1177/0731684407086594

Google Scholar

[8] H. J. Phillips and R. A. Shenoi. Damage tolerance of laminated tee joints in frp structures. Composites Part A: Applied Science and Manufacturing, 29(4):465-478, (1998).

DOI: 10.1016/s1359-835x(97)00081-x

Google Scholar

[9] A. Puck and H. Schürmann. Failure analysis of frp laminates by means of physically based phenomenological models1. Composites Science and Technology, 58(7):1045-1067, (1998).

DOI: 10.1016/s0266-3538(96)00140-6

Google Scholar

[10] P. Read and R. A. Shenoi. Fatigue behaviour of single skin frp tee joints. International Journal of Fatigue, 21(3):281-296, (1999).

DOI: 10.1016/s0142-1123(98)00075-9

Google Scholar

[11] A. Schmitz and P. Horst. Bending deformation limits of corrugated unidirectionally reinforced composites. Composite Structures, 107:103-111, 2014. ISSN 0263-8223.

DOI: 10.1016/j.compstruct.2013.07.048

Google Scholar

[12] R. S. Trask, S. R. Hallett, F. M. M. Helenon, and M. R. Wisnom. Influence of process induced defects on the failure of composite t-joint specimens. Composites Part A: Applied Science and Manufacturing, 43(4):748-757, (2012).

DOI: 10.1016/j.compositesa.2011.12.021

Google Scholar