New Approach for Versatile Self Piercing Riveting: Joining System and Auxiliary Part

Article Preview

Abstract:

The increasing use of multi-material constructions lead to a continuous increase in the use of mechanical joining techniques due to the wide range of joining possibilities as well as the high load-bearing capacities of the joints. Nevertheless, the currently rigid tool systems are not able to react to changing boundary conditions, like changing the material-geometry-combination. Therefore research work is crucial with regard to versatile joining systems. In this paper, a new approach for a versatile self-piercing riveting process considering the joining system as well as the auxiliary joining part is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] Hörhold, Réjane; Müller, Martin; Merklein, Marion; Meschut, Gerson (Hg.) 2016: Mechanical properties of an innovative shear-clinching technology for ultra-high-strength steel and aluminium in lightweight car body structures (60).

DOI: 10.1007/s40194-016-0313-0

Google Scholar

[2] Hahn, O.; Meschut, G.; Bergau, M.; Matzke, M. (Hg.) 2014: Self-pierce Riveting and Hybrid Joining of Boron Steels in Multi-material and Multi-sheet Joints (18).

DOI: 10.1016/j.procir.2014.06.130

Google Scholar

[3] Merkblatt DVS-EFB 3410, Mai 2014: Stanznieten – Überblick.

Google Scholar

[4] Meschut, Gerson; Matzke, Marcus; Hoerhold, Réjane; Olfermann, Thomas 2014: Hybrid Technologies for Joining Ultra-high-strength Boron Steels with Aluminum Alloys for Lightweight Car Body Structures. In: Procedia CIRP 23, S. 19–23.

DOI: 10.1016/j.procir.2014.10.089

Google Scholar

[5] Hornbostel, Norbert 2010: Halbhohlstanzniet. Veröffentlichungsnr: EP 2 314 890 B1.

Google Scholar

[6] Bartig, Paul; Wissling, Matthias 2017: Self-piercing rivet and self-piercing riveted joint. Veröffentlichungsnr: WO 2017/194501 A1.

Google Scholar

[7] Tirnick, R. J. 2015: Method for forming a joint using a self-piercing rivet. Veröffentlichungsnr: US 10,005,120 B2.

Google Scholar

[8] Uhe, Benedikt; Kuball, Clara-Maria; Merklein, Marion; Meschut, Gerson 2020: Improvement of a rivet geometry for the self-piercing riveting of high-strength steel and multi-material joints. In: Prod. Eng. Res. Devel. 2 (2), S. 81.

DOI: 10.1007/s11740-020-00973-w

Google Scholar

[9] Hahn, O.; Kraus, C.; Leuschen, G.; Mauermann, R.; Neugebauer, R.: Research in Impulse Joining of Self Pierce Riveting.

Google Scholar

[10] Hahn, O.; Kraß, B.; Schröder, M.; Dölle, Norbert: Umformtechnisches Fügen mit hoher Fügeelementgeschwindigkeit und impulsförmig oszillierender Werkzeugbewegung (2003).

Google Scholar

[11] Drossel, Welf Guntram; Jäckel, Mathias 2014: New Die Concept for Self-Pierce Riveting Materials with Limited Ductility. In: KEM 611-612, S. 1452–1459.

DOI: 10.4028/www.scientific.net/kem.611-612.1452

Google Scholar

[12] 01.2019: Novelis Advanz™ 6F - e170. Online verfügbar unter http://novelis.com/wp-content/uploads/2019/02/Advanz-6F-e170-DataSheet-012119.pdf.

Google Scholar

[13] EN 10263-4, 11.2017: Steel rod, bars and wire for cold heading and cold extrusion - Part 4: Technical delivery conditions for steels for quenching and tempering.

DOI: 10.3403/02352523

Google Scholar

[14] Li, Dezhi; Chrysanthou, Andreas; Patel, Imran; Williams, Geraint 2017: Self-piercing riveting-a review. In: Int J Adv Manuf Technol 92 (5-8), S. 1777–1824.

DOI: 10.1007/s00170-017-0156-x

Google Scholar