Ferromagnetic Shape-Memory Alloys

Article Preview

Abstract:

The magnetic shape-memory effect is a consequence of the coupling between magnetism and structure in ferromagnetic alloys undergoing a martensitic transformation. In these materials large reversible strains can be magnetically induced by the rearrangement of the martensitic twin-variant structure. Several Heusler and intermetallic alloys have been studied in connec- tion with this property. In this paper we will focus on the Ni-Mn-Ga Heusler alloy which is considered to be the prototypical magnetic shape-memory alloy. After a brief summary of the general properties of this class of materials, we will present recent results of relevance for the understanding of the effect of magnetism on the martensitic transformation. Finally, we will discuss the requirements for the occurrence of the magnetic shape-memory effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-152

Citation:

Online since:

April 2006

Export:

Price:

[1] Interplay of Magnetism and Structure in Functional Materials, Ed. by A. Planes, Ll. Ma˜nosa and A. Saxena, Springer-Verlag, Heidelberg, 2005, in press.

Google Scholar

[2] T. Kakeshita and K. Ullakko, MRS Bulletin, 27, 105 (2002).

Google Scholar

[3] J. Marcos, Ll. Ma˜nosa, A. Planes, F. Casanova, X. Batlle, and A. Labarta, Phys. Rev B, 68, 094401 (2003).

Google Scholar

[4] P.J. Webster, K.R.A. Ziebeck, S.L. Town, and M.S. Peak, Philos. Mag. B, 49, 295 (1984).

Google Scholar

[5] K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, and V.V. Kokorin, Appl. Phys. Lett., 69, 1966 (1996).

Google Scholar

[6] A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, and K. Ishida, Appl. Phys. Lett., 77, 3054 (2000).

Google Scholar

[7] H. Morito, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett., 83, 4993 (2003).

DOI: 10.1063/1.1632039

Google Scholar

[8] R.D. James and M. Wuttig, Philos. Mag. A, 77, 1273 (1998).

Google Scholar

[9] T. Kakeshita, T. Takeuchi, T. Fukuda, M. Tsujiguchi, T. Saburi, R. Oshima, S. Muto, Appl. Phys. Lett., 77, 1502 (2000).

DOI: 10.1063/1.1290694

Google Scholar

[10] W.M. Zhou, Y. Liu, B.H. Jiang, X. Qi, and Y.N. Li, Appl. Phys. Lett., 82, 760 (2003).

Google Scholar

[11] A.N. Lavrov, S. Komiya, and Y. Ando, Nature, 418, 385 (2002).

Google Scholar

[12] The appearance of the L21-phase is of crutial importance for the ferromagnetic order to develop. In Ni-Mn-Al where a mixed L21 + B2 state is established (for kinetic reasons) instead of a single L21 state, a magnetically heterogeneous state develops where ferromagnetism (arising from the L21-phase) and antiferromagnetism (arising from the B2-phase) coexist. See M. Acet et al., J. Appl. Phys., 92, 3867 (2002).

DOI: 10.1016/j.intermet.2004.03.017

Google Scholar

[13] J. Enkovaara, A. Ayuela, A.T. Zayak, P. Entel, L. Nordstr¨om, M. Dube, J. Jalkanen, J. Impola, and R.M. Nieminen, Mater. Sci. Engng. A, 378, 52 (2004).

DOI: 10.1016/j.msea.2003.10.330

Google Scholar

[14] N. Lanska, O. S¨oderberg, A. Sozinov, Y. Ge, K. Ullako, and V.K. Lindroos, J. Appl. Phys., 95, 8074 (2004).

Google Scholar

[15] V.A. Chernenko, C. Segu´ı, E. Cesari, and J. Pons, Phys. Rev. B, 57, 2659 (1998).

Google Scholar

[16] M. Khan, J. Dubenko, S. Stadler, and N. Ali, J. Phys.: Condens. Matter., 16, 5259 (2004).

Google Scholar

[17] J. Enkovaara, O. Heczko, A. Ayuela, and R.M. Nieminen, Phys. Rev. B, 67, 212405 (2003).

Google Scholar

[18] The L21-phase shows cubic anisotropy with easy axes lying along cubic axes.

Google Scholar

[19] A. Planes and Ll. Ma˜nosa, Solid State Physics, 55, 159 (2001). 8.

Google Scholar

[20] A. Zheludev, S.M. Shapiro, P. Wochner, A. Schwartz, M. Wall, and L.E. Tanner, Phys. Rev. B, 51, 11310 (1995); A. Zheludev, S.M. Shapiro, P. Wochner, and L.E. Tanner, Phys. Rev. B, 54, 15045 (1996).

DOI: 10.1051/jp4/1995581139

Google Scholar

[21] In some cases, the pseudoperiodic strain modulations (tweed) are accompanied by magnetic modulations. This is magnetostructural tweed as observed in Co-Ni-Ga [see A. Saxena et al., Phys. Rev. Lett., 92, 197203 (2004).

Google Scholar

[22] U. Sturh, P. Vorderwisch, and V.V. Kokorin, J. Phys.: Condens. Matter, 12, 7541 (2000).

Google Scholar

[23] Ll. Ma˜nosa, A. Planes, J. Zarestky, T. Lograsso, D.L. Schlagel, and C. Stassis, Phys. Rev. B, 64, 024305 (2001).

Google Scholar

[24] Although a non-modulated structure is reported in.

Google Scholar

[23] for powdered samples, recent measurements on bulk specimens are compatible with the 7M structure.

Google Scholar

[25] U. Stuhr, P. Vorderwish, V.V. Kokorin and P. -A. Lindg˚ard, Phys. Rev. B, 56, 14360 (1997).

Google Scholar

[26] T. Cast´an, A. Saxena, and A. Planes, Phys. Rev. B, 67, 134113 (2003).

Google Scholar

[27] Ll. Ma˜nosa, A. Goz`alez-Comas, E. Obrad´o, A. Planes, V.A. Chernenko, V.V. Kokorin, and E. Cesari, Phys. Rev. B, 55, 11068 (1997).

Google Scholar

[28] A. Planes, E. Obrad´o, A. Goz`alez-Comas, and Ll. Ma˜nosa, Phys. Rev. Lett., 79, 3926 (1997).

Google Scholar

[29] M. Stipcich, Ll. Ma˜nosa, A. Planes, M. Morin, J. Zarestky, T. Lograsso, and C. Stassis, Phys. Rev. B 70, 054115 (2004).

Google Scholar

[30] A. Zheludev and S.M. Shapiro, Solid State Commun., 998, 35 (1996).

Google Scholar

[31] W.H. Wang et al., J. Phys. Condens. Matter., 13, 2607 (2001).

Google Scholar

[32] Y. Lee, J.Y. Rhee, and B.N. Harmon, Phys. Rev. B, 66, 054424 (2002).

Google Scholar

[33] P.J. Brown, A.Y. Bargawi, J. Crangle, K. -U. Newmann, and K.R.A. Ziebeck, J. Phys.: Condens. Matter., 11 4715 (1999).

Google Scholar

[34] A.G. Khachaturyan, S.M. Shapiro, and S. Semenovskaya, Phys. Rev. B, 43, 10832 (1991).

Google Scholar

[35] A.A. Likhachev, A. Sozinov, and K. Ullakko, Proc. SPIE, 4333, 197 (2001).

Google Scholar

[36] Q. Pan and R.D. James, J. Appl. Phys., 87, 4702 (2000).

Google Scholar

[37] M.R. Sullivan and H.D. Chopra, Phys. Rev. B, 70, 094427 (2004).

Google Scholar

[38] R.C. O'Handley, J. Appl. Phys., 83, 3263 (1998).

Google Scholar

[39] Typically, increasing 1 K TM requires the application of a field of about 20 kOe. Since the transition extends over several degrees in temperature, magnetic fields larger than 100 kOe should be used to induce the whole transformation.

Google Scholar

[40] A. Sozinov, A.A. Likhachev, N. Lanska, and K. Ullakko, Appl. Phys. Lett., 80, 1746 (2002).

Google Scholar

[41] In spite of the fact that magnetic anisotropy is larger in systems which transform to the 5M structure (the magnetic anisotropy decreases with increasing e/a), the transformation strain is larger in systems which transform to the 7M phase. This article was processed using the LATEX macro package with TTP style.

Google Scholar