Synthesis of Aluminium Based Bulk Materials from Micro and Nano Particles Using Back Pressure Equal Channel Angular Consolidation

Article Preview

Abstract:

An innovative process for synthesising bulk materials using particles has been developed. The process is termed back pressure equal channel angular consolidation (BP-ECAC). Aluminium based materials were successfully consolidated into bulk materials using particles from nano to micro scales. BP-ECAC allowed the particles to be used directly without pre-compacting and casing and the processing temperatures to be significantly lower than those used in conventional sintering. Fully dense bulk samples were obtained instantaneously as the particles were forced to pass the shearing zone under pressure. Nanostructured materials were obtained from the nanometre-sized Al particles. Significant strengthening of the consolidated materials were observed. The new process is promising in producing porosity free, large volume materials with special compositions and structures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Pages:

1215-1220

Citation:

Online since:

July 2006

Export:

Price:

[1] B. S. Murty and S. Ranganathan: Inter. Mater. Rev. Vol. 43 (1998), p.1.

Google Scholar

[2] L. A. Jacobson and J. McKittrick: Mater. Sci. Eng. Vol. R11 (1994), p.355.

Google Scholar

[3] S. C. Tjong and H. Chen: Mater. Sci. Eng. Vol. R45 (2004), p.1.

Google Scholar

[4] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[5] J. F. Löffler: Intermetallics Vol. 11 (2003), p.529.

Google Scholar

[6] W. H. Wang, C. Dong and C. H. Shek: Mater. Sci. Eng. Vol. R44 (2004), p.45.

Google Scholar

[7] E. Y. Gutmanas: Prog. Mater. Sci. Vol. 34 (1990), p.261.

Google Scholar

[8] B. Q. Han and E. J. Lavernia: Adv. Eng. Mater. Vol. 7 (2005), p.457.

Google Scholar

[9] E. Y. Gutmanas, L. I. Trusov and I. Gotman: Nanostructured Materials Vol. 4 (1994), p.893.

Google Scholar

[10] K. Okazaki: Mater. Sci. Eng. Vol. A287 (2000), p.189.

Google Scholar

[11] Z. Lee, F. Zhou, R. Z. Valiev, E. J. Lavernia and S. R. Nutt: Scr. Mater. Vol. 51 (2004), p.209.

Google Scholar

[12] K. Matsuki, T. Aida, T. Takeuchi, J. Kusui and K. Yokoe: Acta Mater. Vol. 48 (2000), p.2625.

Google Scholar

[13] M. Haouaoui, I. Karaman, H. J. Maier and K. T. Hartwig: Metall. Mater. Trans. A Vol. 35A (2004), p.2935.

Google Scholar

[14] K. Xia and X. Wu: Scr. Mater. Vol. (2005), p.1225.

Google Scholar

[15] X. Wu and K. Xia: Mater. Sci. Forum Vol. 503-504 (2006), p.233.

Google Scholar

[16] A. Yamashita, Z. Horita and T. G. Langdon: Mater. Sci. Eng. Vol. A300 (2001), p.142.

Google Scholar

[17] Q. S. M. Kwok, R. C. Fouchard, A. -M. Turcotte, P. D. Lightfoot, R. Bowes and D. E. G. Jones: Propellants, Explosives, Pyrotechnics Vol. 27 (2002), p.229.

DOI: 10.1002/1521-4087(200209)27:4<229::aid-prep229>3.0.co;2-b

Google Scholar