Effect of Addition of Rare Earth Oxide Concentrates on Oxidation Resistance of AISI 304L

Article Preview

Abstract:

Rare earth elements are often added to chromium dioxide forming alloys to improve its high temperature oxidation resistance. The rare earths can be also added as oxide dispersions. Significant cost reductions are possible if rare earth oxide concentrates can be used instead of pure rare earth oxides, the former being the precursor to obtaining pure rare earth oxide. In this study the effect of adding pure and concentrates of rare earth oxides to AISI 304L on its oxidation behavior has been evaluated. AISI 304L stainless steel powder compacts containing 2 vol% of pure lanthanum and yttrium oxides or their concentrate were prepared by milling followed by pressing. The compacts were vacuum sintered and isothermally oxidized in air for up to 200h at 900°C. The parabolic rate constants were determined and the reaction products examined using a scanning electron microscope. X-ray diffraction analysis of the reaction products was also carried out. The compacts with pure rare earth oxides and the concentrates exhibited similar oxidation behavior.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 530-531)

Pages:

99-104

Citation:

Online since:

November 2006

Export:

Price:

[1] F.H. Sttot, Mat. Sci. and Tech. 5 (1989), p.734.

Google Scholar

[2] F.S. Pettit and G.W. Goward, Superalloys source book, ASM, (1981), p.170.

Google Scholar

[3] P.Y. Hou; J. Stringer, Mat. Sci. and Eng., (1987), p.295.

Google Scholar

[4] T.N. Rhys-Jones; H.J. Grabke; H. Kudielka, Corr. Sci., 27 (1987), p.49.

Google Scholar

[5] C.M. Cotell; G.J. Yurek; R.J. Hussey; D.F. Mitchell; M.J. Graham, Oxid. Metals, 34(1990), p.173.

Google Scholar

[6] D.P. Whittle and J. Stringer, J. Phil. Trans. R. Soc. Lond., A295 (1980), p.309.

Google Scholar

[7] J. Jedlinski and S. Mrowec, Mat. Sci and Eng. 87 (1987), p.281.

Google Scholar

[8] M.F. Pillis, São Paulo, (2001) Doctorate Thesis - Universidade de São Paulo.

Google Scholar

[9] R. Cueff; H. Buscail; E. Caudron; C. Issartel; F. Riffard, Corr. Sci., 45, 8 (2003), p.1815.

Google Scholar

[10] W.J. Quadakkers, H. Holzbrecher; K.G. Briefs; H. Beske, Oxid. Metals, 32 (1989), p.67.

Google Scholar

[11] B.A. Pint; A.J. Garratt-Reed; L.W. Hobbs, Mat. at High Temp., 13 (1995), p.3.

Google Scholar

[12] Bautista, A.; Velasco, F.; Abenojar, J., Corr. Sci., 45 (2003), p.1343.

Google Scholar

[13] D.P. Moon, Mat. Sci. and Tech., 5 (1989), p.754.

Google Scholar

[14] B. Pieraggi and R.A. Rapp, J. Electrochem. Soc., 140 (1993), p.2844.

Google Scholar

[15] T.N. Rhys-Jones and H.J. Grabke, Mat. Sci. and Tech., 4 (1988), p.446.

Google Scholar

[16] N.B. Pilling and R.E. Bedworth, J. Inst. Metals XXIX (1923), p.529.

Google Scholar

[17] G.J. Yurek; K. Przybylski; A.J. Garratt-Reed, J. Electrochem. Soc., (1987), p.2643.

Google Scholar

[18] C.M. Cotell; G.J. Yurek; R.J. Hussey; D.F. Mitchell; M.J. Graham, Oxid. Metals, 34, 3/4 (1990), p.201.

Google Scholar

[19] K. Przyblski; A.J. Garratt-Reed; G.J. Yurek, J. Electrochem. Soc., 135, 2 (1998), p.509.

Google Scholar

[20] P. Papaiacovou; R.J. Hussey; D.F. Mitchell; M.J. Graham, Corr. Sci., 30, 4/5 (1990), p.451.

Google Scholar

[21] P. Kofstad, Mat. Sci. Forum, 154 (1994), p.99.

Google Scholar