Substructure and Crystallography of Degenerate Pearlite in an Fe-C Binary Alloy

Article Preview

Abstract:

Microstructures formed by degenerate pearlite transformation in an Fe-0.38mass%C alloy were studied by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Degenerate pearlite which contains fine cementite particles even at the growth front was observed with other structures such as proeutectoid ferrite, lamellar pearlite and bainite in a temperature range between 773K and 923K. As the isothermal transformation temperature is lowered, a fraction of the degenerate pearlite increases. The degenerate pearlite consists of ‘block’ (a region in which ferrite orientations are nearly the same) and ‘colony’ (a region containing cementite particles of nearly the same orientation), both of which are similar to those in lamellar pearlite. Block boundaries within an austenite grain are generally of high-angle type and their misorientations deviate largely from intervariant relationships for the K-S orientation relationship. In contrast, colony boundaries are of low-angle type. Cementite films are formed along those ferrite boundaries in the degenerate pearlite, presumably formed by encounter of the blocks or colonies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

4832-4837

Citation:

Online since:

March 2007

Export:

Price:

[1] Y. Ohmori and R. W. K . Honeycombe: Proc. Int. Conf. on Science and Technology of Iron and Steels, Suppl. Trans. ISIJ, Vol. 11 (1971), p.1160.

Google Scholar

[2] Y. Ohmori and R. W. K . Honeycombe: Trans. ISIJ, Vol. 12(1972), p.128.

Google Scholar

[3] R. W. K. Honeycombe: Proc. Int. Conf. on Phase Transformation in Ferrous Alloys, ed. by A. R. Marder and J. I. Goldstein, TMS-AIME, Warrendale, Pennsylvania, (1983), p.259.

Google Scholar

[4] L J. Habraken and M. Economopoulos: Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, Michigan, (1967), p.69.

Google Scholar

[5] D. N. Shackleton and P. M. Kelly: Acta Metall., Vol. 15 (1967), p.979.

Google Scholar

[6] G. Spanos: Metall. Trans. A, Vol. 23A (1992), p.171.

Google Scholar

[7] T. Takahashi, M. Nagumo and Y. Asano: J. Jpn. Inst. Met., Vol. 42(1978), p.708.

Google Scholar

[8] T. Takahashi, M. Nagumo and Y. Asano: J. Jpn. Inst. Met., Vol. 42(1978), p.716.

Google Scholar

[9] G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki and R. Uemori: Scripta Mater., Vol. 48 (2003), p.371.

DOI: 10.1016/s1359-6462(02)00451-7

Google Scholar

[10] T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura and T. Maki: ISIJ Inter., Vol. 43 (2003), p. (2028).

DOI: 10.2355/isijinternational.43.2028

Google Scholar

[11] T. Furuhara, G. Miyamoto, H. Saito and T. Maki: Proc. Int. Conf. on Solid-solid Phase Transformations in Inorganic Materials 2005 (PTM05), 2006, in press.

Google Scholar

[12] T. Furuhara, K. Wada and T. Maki: Metall. Mater. Trans. A, Vol. 26A (1995), p. (1971).

Google Scholar

[13] R. J. Dippenaar and R. W. K. Honeycombe: Proc. Roy. Soc. Lond. A. Vol. 333 (1973), p.455.

Google Scholar

[14] M. Hillert: Decomposition of Austenite by Diffusional Processes, ed. by V. F. Zackey and H. I. Aaronson, Interscience, New York, (1962), p.197.

Google Scholar

[15] M. Hillert: in the discussion of the paper by L. S. Darken and R. M. Fisher, Decomposition of Austenite by Diffusional Processes, ed. by V. F. Zackey and H. I. Aaronson, Interscience, New York, (1962), p.289.

Google Scholar

[16] L. S. Darken and R. M. Fisher: Decomposition of Austenite by Diffusional Processes, ed. by V. F. Zackey and H. I. Aaronson, Interscience, New York, (1962), p.249.

Google Scholar

[17] H. I. Aaronson, G. Spanos, R. A. Masamura, R. G. Vardiman, D. W. Moon, E. S. K. Menon and M. G. Hall: Mater. Sci. Engng. B, Vol. 32 (1995), p.107.

DOI: 10.1016/0921-5107(95)80022-0

Google Scholar

[18] T. Moritani, Ph. D thesis, 2003, Kyoto University.

Google Scholar

[19] G. Spanos and M. G. Hall: Metall. Mater. Trans. A, Vol. 27A (1996), p.1519.

Google Scholar

[20] D. Phelan and R. Dippenaar: Metall. Mater. Trans. A, Vol. 35A (2004), p.3701.

Google Scholar

[21] T. Furuhara and H. I. Aaronson: Scripta Metall., Vol. 22 (1988), p.1635.

Google Scholar