Forming Limit Diagrams for AA5083 under SPF and QPF Conditions

Article Preview

Abstract:

Forming Limit Diagrams (FLD’s) for AA5083 aluminum sheet were established under both Superplastic Forming (SPF) and Quick Plastic Forming (QPF) conditions. SPF conditions consisted of a strain rate of 0.0001/s at 500°C, while QPF conditions consisted of a strain rate of 0.01/s at 450°C. The forming limit diagrams were generated using uniaxial tension, biaxial bulge, and plane strain bulge testing. Forming limits were defined using two criteria: (1) macroscopic fracture and (2) greater than 2% cavitation. Very little difference was observed between the plane strain limits in the SPF and QPF conditions indicating comparable formability between the two processes with a commercial grade AA5083 material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 551-552)

Pages:

129-134

Citation:

Online since:

July 2007

Export:

Price:

[1] A.J. Barnes: Mat. Sci. Forum, Vol. 170-172 (1994) p.701.

Google Scholar

[2] M.S. Rashid, C. Kim, E.F. Ryntz, F.I. Saunders, R. Verma, and S. Kim: US Patent #6, 253, 588, (2001).

Google Scholar

[3] J.G. Schroth in: Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004), p.9.

Google Scholar

[4] P.E. Krajewski in: Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004) p.173.

Google Scholar

[5] M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley: Met. Mat. Trans A., Vol 36A, No. 5 (2005) p.1249.

Google Scholar

[6] M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley: Met. Mat. Trans A., Vol 37A, No. 3 (2006) p.645.

Google Scholar

[7] S.P. Keeler and W.A. Backofen: Trans. ASM, Vol. 56 (1963) p.25.

Google Scholar

[8] S.P. Keeler: Metals Progress, October (1966) p.148.

Google Scholar

[9] G.M. Goodwin: SAE Paper #680093 (1968).

Google Scholar

[10] B. Taylor in: Metals Handbook, Ninth Edition, Vol. 8, Mechanical Testing, American Society for Metals, Metals Park, OH (1985) p.547.

Google Scholar

[11] M.W. Mahoney, C.H. Hamilton, and A.K. Ghosh: Met. Trans. A, Vol. 14A (1983) p.1593.

Google Scholar

[12] K.C. Chan and K.K. Chow: Int. J. Mech. Sci., Vol. 44(2002) p.1467.

Google Scholar

[13] K.C. Chan and K.K. Chow: Materials Letters, Vol. 56 (2002) p.38.

Google Scholar

[14] T. Naka, G. Torikai, R. Hino, and F. Yoshida: J. Mat. Proc. Tech., Vol. 113, No. 1-3 (2001) p.648.

Google Scholar

[15] D.H. Bae, A.K. Ghosh and J.R. Bradley: Met. Mat. Trans. A, Vol. 34A, No. 11(2003) p.2449.

Google Scholar

[16] J.R. Bradley in: Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004) p.109.

Google Scholar

[17] J.R. Bradley and J.E. Carsley. Post-Form Properties of Superplastically Formed AA5083 Aluminum Sheet, in Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004).

Google Scholar