Ultrahigh Strength and Ductility of Cu-Nb Nanolayered Composites

Article Preview

Abstract:

In recent years, the high strength of nanomaterials has gathered much interest in the materials community. Nanomaterials (polycrystalline and composites) have already been used, largely by the semiconductor community, as critical length scales for chip design have decreased to tens of nanometers. However, to ensure reliability of nanomaterials, the mechanisms underlying their structural integrity must be well understood. For these materials to be put into service, not only should their strength be considered, but also ductility, toughness, formability, and fatigue resistance. While some progress has been made into constructing models for the deformation mechanisms governing these behaviors, the body of experimental knowledge is still limited, especially for length scales below 10 nanometers. The results described here show stress-strain curves for nanolaminate composites with individual layer thickness of 40 nm and 5 nm. Nanolaminate composites fabricated via magnetron sputtering comprised of alternating 5 nm thick Cu and Nb multilayers (two relatively soft metals) exhibit strengths on par with hardened tool steel and deformability in compression in excess of 25% [1]. The deformability of nanoscale composites is found to be limited by the onset of geometric instability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

647-653

Citation:

Online since:

November 2009

Export:

Price:

[1] N. A. Mara, D. Bhattacharyya, P. Dickerson, R. G. Hoagland, A. Misra, Applied Physics Letters Vol. 92 (2008), p.231901.

DOI: 10.1063/1.2938921

Google Scholar

[2] C. C. Koch, Scripta Materialia Vol. 49 (2003), p.657.

Google Scholar

[3] J. Wang, R. G. Hoagland, J. P. Hirth, A. Misra, Acta Materialia Vol. 56 (2008), p.5685.

Google Scholar

[4] J. Wang, R. G. Hoagland, J. P. Hirth, A. Misra, Acta Materialia Vol. 56 (2008), p.3109.

Google Scholar

[5] H. Van Swygenhoven, P. M. Derlet, A. G. Froseth, Acta Materialia Vol. 54 (2006), p. (1975).

Google Scholar

[6] A. Misra, X. Zhang, D. Hammon, R. G. Hoagland, Acta Materialia Vol. 53 (2005), p.221.

Google Scholar

[7] N. A. Mara, D. Bhattacharyya, R. G. Hoagland, A. Misra, Scripta Materialia Vol. 58 (2008), p.874.

DOI: 10.1016/j.scriptamat.2008.01.005

Google Scholar

[8] A. Misra, M. Verdier, Y. C. Lu, H. Kung, T. E. Mitchell, N. Nastasi, J. D. Embury, Scripta Materialia Vol. 39 (1998), p.555.

DOI: 10.1016/s1359-6462(98)00196-1

Google Scholar

[9] A. Misra, J. P. Hirth, H. Kung, Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties Vol. 82 (2002), p.2935.

Google Scholar

[10] K. L. Johnson, Journal of the Mechanics and Physics of Solids Vol. 18 (1970), p.115.

Google Scholar

[11] G. E. Dieter, Mechanical metallurgy, McGraw-Hill, (1986).

Google Scholar

[12] P. S. Steif, J Appl Metalwork Vol. 4 (1987), p.317.

Google Scholar

[13] M. D. Uchic, D. M. Dimiduk, J. N. Florando, W. D. Nix, Science Vol. 305 (2004), p.986.

Google Scholar

[14] M. D. Uchic, D. A. Dimiduk, Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing) Vol. 400/401 (2005), p.268.

Google Scholar

[15] C. A. Volkert, E. T. Lilleodden, Philosophical Magazine Vol. 86 (2006), p.5567.

Google Scholar

[16] J. R. Greer, W. C. Oliver, W. D. Nix, Acta Materialia Vol. 53 (2005), p.1821.

Google Scholar

[17] D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, Materials Science & Engineering A Vol. 459 (2007), p.262.

DOI: 10.1016/j.msea.2007.01.046

Google Scholar

[18] A. Misra, R. G. Hoagland, Journal of Materials Research Vol. 20 (2005), p. (2046).

Google Scholar

[19] J. Gubicza, N. Q. Chinh, T. Csanadi, T. G. Langdon, T. Ungar, Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing) Vol. 462 (2007), p.86.

Google Scholar