Interaction of the Precipitation Kinetics of δ And γ’ Phases in Nickel-Base Superalloy ATI Allvac® 718PlusTM

Article Preview

Abstract:

In this paper, the precipitation behaviour of  (Ni3(Nb,Al)) and ’ (Ni3(Al,Ti,Nb)) phases in the nickel-base superalloy ATI Allvac® 718PlusTM, as well as their kinetic interactions are discussed. Important parameters such as volume fraction, mean radius and number density of precipitates are experimentally determined and numerically simulated as a function of the heat treatment parameters time and temperature. To match the experimentally observed kinetics, the predicted interfacial energy of the precipitates, as calculated for a sharp, planar phase boundary, is adjusted to take into account the interfacial curvature and entropic effects of a diffuse interface. Correction functions for the interfacial energies of  as well as ’ precipitates are presented. Using these modified interfacial energies, the calculated results show excellent agreement with the experimental measurements.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2712-2717

Citation:

Online since:

January 2010

Export:

Price:

[1] C.T. Sims, N.S. Stoloff and W.C. Hagel, Superalloys II, Wiley, New York, (1987).

Google Scholar

[2] W.D. Cao, and R. Kennedy, in: Proc. Superalloys 2004, The Minerals, Metals and Materials Society, Warrendale, PA, 2004, 91.

Google Scholar

[3] C. Stotter C. Sommitsch, J. Wagner, H. Leitner, I. Letofsky-Papst, G.A. Zickler, W. Prantl and M. Stockinger, Int. J. Mat. Res., 99 (2008), 376.

DOI: 10.3139/146.101648

Google Scholar

[4] V. Beaubois, J. Huez, S. Coste, O. Brucelle and J. Lacaze, Mater. Sci. Techn., 20 (2004), 1019.

Google Scholar

[5] E. Nembach and G. Neite, Progr. Mater. Sci., 29 (1985), 177.

Google Scholar

[6] A.J. Ardell; Metall. Trans., A 16A (1985), 2131.

Google Scholar

[7] J. Svoboda, F.D. Fischer, P. Fratzl and E. Kozeschnik, Mater. Sci. Eng., A385 (2004), 166.

Google Scholar

[8] E. Kozeschnik, J. Svoboda, P. Fratzl and F.D. Fischer, Mater. Sci. Eng., A385 (2004), 157.

Google Scholar

[9] E. Kozeschnik, J. Svoboda and F.D. Fischer, CALPHAD, 28 (4) (2005), 379.

Google Scholar

[10] ThermoTech, Ni-Base Version 5. 0 http: /www. thermotech. co. uk/databases. html (19. 01. 2009).

Google Scholar

[11] C.E. Campbell, W.J. Boettinger, and U.R. Kattner, Acta Mater., 50 (2002), 775.

Google Scholar

[12] R. Kampmann and R. Wagner . Acta Scripta Metall series, (1984), 91.

Google Scholar

[13] K. Russell Adv. Colloid Sci 13, (1980), 205.

Google Scholar

[14] Janssens KGF, Raabe D, Kozeschnik E, Miodownik MA, Nestler B. Computational Materials Engineering - An Introduction to Microstructure Evolution,. Elsevier Academic Press, Oxford, (2007).

Google Scholar

[15] B. Sonderegger and E. Kozeschnik, Metall. Mater. Trans., 40A (2009), 499.

Google Scholar

[16] B. Sonderegger and E. Kozeschnik, Scripta Mater., in print.

Google Scholar

[17] M. Pudar, E. Kozeschnik, A. Sormann and E. Parteder, Steel Res. Int., 79 (8) (2008), 660.

DOI: 10.1002/srin.200806180

Google Scholar

[18] Y.W. Lee and H.I. Aaronson, Acta Metall., 28 (1980), 539.

Google Scholar

[19] K. Wu, F. Zhang, S. Chen, W. Cao and Y.A. Chang, in: Superalloys 2008, The Minerals, Metals and Materials Society, Warrendale, PA, 2008, 933.

Google Scholar

[20] M.K. Miller and S.S. Babu, in: Superalloys 718, 625, 706 and Various Derivatives, The Minerals, Metals and Materials Society, Warrendale, PA 2001, p.357.

Google Scholar